You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

601 lines
22 KiB

8 years ago
# See the file "LICENSE" for information about the copyright
8 years ago
# and warranty status of this software.
import array
import itertools
import os
import struct
import time
from binascii import hexlify, unhexlify
from bisect import bisect_right
from collections import defaultdict, namedtuple
from functools import partial
import logging
import plyvel
from lib.coins import Bitcoin
from lib.script import ScriptPubKey
# History can hold approx. 65536 * HIST_ENTRIES_PER_KEY entries
HIST_ENTRIES_PER_KEY = 1024
HIST_VALUE_BYTES = HIST_ENTRIES_PER_KEY * 4
ADDR_TX_HASH_LEN = 4
UTXO_TX_HASH_LEN = 4
8 years ago
UTXO = namedtuple("UTXO", "tx_num tx_pos tx_hash height value")
def to_4_bytes(value):
return struct.pack('<I', value)
def from_4_bytes(b):
return struct.unpack('<I', b)[0]
class UTXOCache(object):
'''An in-memory UTXO cache, representing all changes to UTXO state
since the last DB flush.
We want to store millions, perhaps 10s of millions of these in
memory for optimal performance during initial sync, because then
it is possible to spend UTXOs without ever going to the database
(other than as an entry in the address history, and there is only
one such entry per TX not per UTXO). So store them in a Python
dictionary with binary keys and values.
Key: TX_HASH + TX_IDX (32 + 2 = 34 bytes)
Value: HASH168 + TX_NUM + VALUE (21 + 4 + 8 = 33 bytes)
That's 67 bytes of raw data. Assume 100 bytes per UTXO accounting
for Python datastructure overhead, then perhaps 20 million UTXOs
can fit in 2GB of RAM. There are approximately 42 million UTXOs
on bitcoin mainnet at height 433,000.
Semantics:
add: Add it to the cache dictionary.
spend: Remove it if in the cache dictionary.
Otherwise it's been flushed to the DB. Each UTXO
is responsible for two entries in the DB stored using
compressed keys. Mark both for deletion in the next
flush of the in-memory UTXO cache.
A UTXO is stored in the DB in 2 "tables":
1. The output value and tx number. Must be keyed with a
hash168 prefix so the unspent outputs and balance of an
arbitrary address can be looked up with a simple key
traversal.
Key: b'u' + hash168 + compressed_tx_hash + tx_idx
Value: a (tx_num, value) pair
2. Given a prevout, we need to be able to look up the UTXO key
to remove it. As is keyed by hash168 and that is not part
of the prevout, we need a hash168 lookup.
Key: b'h' + compressed tx_hash + tx_idx
Value: (hash168, tx_num) pair
The compressed TX hash is just the first few bytes of the hash of
the TX the UTXO is in (and needn't be the same number of bytes in
each table). As this is not unique there will be collisions;
tx_num is stored to resolve them. The collision rate is around
0.02% for the hash168 table, and almost zero for the UTXO table
(there are around 100 collisions in the whole bitcoin blockchain).
'''
def __init__(self, parent, db, coin):
self.logger = logging.getLogger('UTXO')
self.logger.setLevel(logging.INFO)
self.parent = parent
self.coin = coin
self.cache = {}
self.db = db
self.db_cache = {}
# Statistics
self.adds = 0
self.cache_hits = 0
self.db_deletes = 0
def size_MB(self):
'''Returns the approximate size of the cache, in MB.'''
return (len(self.cache) + len(self.db_cache)) * 100 // 1048576
def add_many(self, tx_hash, tx_num, txouts):
'''Add a sequence of UTXOs to the cache, return the set of hash168s
seen.
Pass the hash of the TX it appears in, its TX number, and the
TX outputs.
'''
parse_script = ScriptPubKey.from_script
pack = struct.pack
tx_numb = pack('<I', tx_num)
hash168s = set()
self.adds += len(txouts)
for idx, txout in enumerate(txouts):
# Get the hash168. Ignore scripts we can't grok.
pk = parse_script(txout.pk_script, self.coin)
hash168 = pk.hash168
if not hash168:
continue
hash168s.add(hash168)
key = tx_hash + pack('<H', idx)
if key in self.cache:
logging.info('duplicate tx hash {}'
.format(bytes(reversed(tx_hash)).hex()))
# b''.join avoids this: https://bugs.python.org/issue13298
self.cache[key] = b''.join(
(hash168, tx_numb, pack('<Q', txout.value)))
return hash168s
def spend(self, prevout):
'''Spend a UTXO and return the address spent.
If the UTXO is not in the cache it must be on disk.
'''
# Fast track is it's in the cache
pack = struct.pack
key = b''.join((prevout.hash, pack('<H', prevout.n)))
value = self.cache.pop(key, None)
if value:
self.cache_hits += 1
return value[:21]
# Oh well. Find and remove it from the DB.
hash168 = self.hash168(prevout.hash, prevout.n)
if not hash168:
return None
self.db_deletes += 1
# Read the UTXO through the cache from the disk. We have to
# go through the cache because compressed keys can collide.
key = (b'u' + hash168 + prevout.hash[:UTXO_TX_HASH_LEN]
+ pack('<H', prevout.n))
data = self.cache_get(key)
if data is None:
# Uh-oh, this should not happen...
self.logger.error('found no UTXO for {} / {:d} key {}'
.format(bytes(reversed(prevout.hash)).hex(),
prevout.n, bytes(key).hex()))
return hash168
if len(data) == 12:
(tx_num, ) = struct.unpack('<I', data[:4])
self.cache_delete(key)
return hash168
# Resolve the compressed key collison. These should be
# extremely rare.
assert len(data) % 12 == 0
for n in range(0, len(data), 12):
(tx_num, ) = struct.unpack('<I', data[n:n+4])
tx_hash, height = self.parent.get_tx_hash(tx_num)
if prevout.hash == tx_hash:
data = data[:n] + data[n + 12:]
self.cache_write(key, data)
return hash168
raise Exception('could not resolve UTXO key collision')
def hash168(self, tx_hash, idx):
'''Return the hash168 paid to by the given TXO.
Refers to the database. Returns None if not found (which is
indicates a non-standard script).
'''
key = b'h' + tx_hash[:ADDR_TX_HASH_LEN] + struct.pack('<H', idx)
data = self.cache_get(key)
if data is None:
# Assuming the DB is not corrupt, this indicates a
# successful spend of a non-standard script
# self.logger.info('ignoring spend of non-standard UTXO {} / {:d}'
# .format(bytes(reversed(tx_hash)).hex(), idx)))
return None
if len(data) == 25:
self.cache_delete(key)
return data[:21]
assert len(data) % 25 == 0
# Resolve the compressed key collision using the TX number
for n in range(0, len(data), 25):
(tx_num, ) = struct.unpack('<I', data[n+21:n+25])
my_hash, height = self.parent.get_tx_hash(tx_num)
if my_hash == tx_hash:
self.cache_write(key, data[:n] + data[n+25:])
return data[n:n+21]
raise Exception('could not resolve hash168 collision')
def cache_write(self, key, value):
'''Cache write of a (key, value) pair to the DB.'''
assert(bool(value))
self.db_cache[key] = value
def cache_delete(self, key):
'''Cache deletion of a key from the DB.'''
self.db_cache[key] = None
def cache_get(self, key):
'''Fetch a value from the DB through our write cache.'''
value = self.db_cache.get(key)
if value:
return value
return self.db.get(key)
def flush(self, batch):
'''Flush the cached DB writes and UTXO set to the batch.'''
# Care is needed because the writes generated by flushing the
# UTXO state may have keys in common with our write cache or
# may be in the DB already.
hcolls = ucolls = 0
new_utxos = len(self.cache)
for cache_key, cache_value in self.cache.items():
# Frist write to the hash168 lookup table
key = b'h' + cache_key[:ADDR_TX_HASH_LEN] + cache_key[-2:]
value = cache_value[:25]
prior_value = self.cache_get(key)
if prior_value: # Should rarely happen
hcolls += 1
value += prior_value
self.cache_write(key, value)
# Next write the UTXO table
key = (b'u' + cache_value[:21] + cache_key[:UTXO_TX_HASH_LEN]
+ cache_key[-2:])
value = cache_value[-12:]
prior_value = self.cache_get(key)
if prior_value: # Should almost never happen
ucolls += 1
value += prior_value
self.cache_write(key, value)
# GC-ing this now can only help the levelDB write.
self.cache = {}
# Now we can update to the batch.
for key, value in self.db_cache.items():
if value:
batch.put(key, value)
else:
batch.delete(key)
self.db_cache = {}
self.logger.info('UTXO cache adds: {:,d} spends: {:,d} '
.format(self.adds, self.cache_hits))
self.logger.info('UTXO DB adds: {:,d} spends: {:,d}. '
'Collisions: hash168: {:,d} UTXO: {:,d}'
.format(new_utxos, self.db_deletes,
hcolls, ucolls))
self.adds = self.cache_hits = self.db_deletes = 0
8 years ago
class DB(object):
HEIGHT_KEY = b'height'
TIP_KEY = b'tip'
GENESIS_KEY = b'genesis'
TX_COUNT_KEY = b'tx_count'
FLUSH_COUNT_KEY = b'flush_count'
8 years ago
WALL_TIME_KEY = b'wall_time'
class Error(Exception):
pass
def __init__(self, env):
self.logger = logging.getLogger('DB')
self.logger.setLevel(logging.INFO)
self.coin = env.coin
self.flush_MB = env.flush_MB
self.logger.info('flushing after cache reaches {:,d} MB'
.format(self.flush_MB))
8 years ago
self.tx_counts = array.array('I')
self.tx_hash_file_size = 4*1024*1024
# Unflushed items. Headers and tx_hashes have one entry per block
self.headers = []
self.tx_hashes = []
self.history = defaultdict(list)
self.history_size = 0
8 years ago
db_name = '{}-{}'.format(self.coin.NAME, self.coin.NET)
try:
self.db = self.open_db(db_name, False)
except:
self.db = self.open_db(db_name, True)
self.headers_file = self.open_file('headers', True)
self.txcount_file = self.open_file('txcount', True)
self.init_db()
self.logger.info('created new database {}'.format(db_name))
else:
self.logger.info('successfully opened database {}'.format(db_name))
self.headers_file = self.open_file('headers')
self.txcount_file = self.open_file('txcount')
self.read_db()
self.utxo_cache = UTXOCache(self, self.db, self.coin)
8 years ago
# Note that DB_HEIGHT is the height of the next block to be written.
# So an empty DB has a DB_HEIGHT of 0 not -1.
self.tx_count = self.db_tx_count
self.height = self.db_height - 1
self.tx_counts.fromfile(self.txcount_file, self.db_height)
self.last_flush = time.time()
# FIXME: this sucks and causes issues with exceptions in init_db()
8 years ago
if self.tx_count == 0:
self.flush()
def open_db(self, db_name, create):
return plyvel.DB(db_name, create_if_missing=create,
error_if_exists=create, compression=None)
8 years ago
def init_db(self):
self.db_height = 0
self.db_tx_count = 0
self.flush_count = 0
8 years ago
self.wall_time = 0
self.tip = self.coin.GENESIS_HASH
self.db.put(self.GENESIS_KEY, unhexlify(self.tip))
8 years ago
def read_db(self):
db = self.db
genesis_hash = hexlify(db.get(self.GENESIS_KEY))
8 years ago
if genesis_hash != self.coin.GENESIS_HASH:
raise self.Error('DB genesis hash {} does not match coin {}'
.format(genesis_hash, self.coin.GENESIS_HASH))
self.db_height = from_4_bytes(db.get(self.HEIGHT_KEY))
self.db_tx_count = from_4_bytes(db.get(self.TX_COUNT_KEY))
self.flush_count = from_4_bytes(db.get(self.FLUSH_COUNT_KEY))
self.wall_time = from_4_bytes(db.get(self.WALL_TIME_KEY))
self.tip = hexlify(db.get(self.TIP_KEY))
self.logger.info('{}/{} height: {:,d} tx count: {:,d} '
'flush count: {:,d} sync time: {}'
8 years ago
.format(self.coin.NAME, self.coin.NET,
self.db_height - 1, self.db_tx_count,
self.flush_count, self.formatted_wall_time()))
8 years ago
def formatted_wall_time(self):
wall_time = int(self.wall_time)
return '{:d}d {:02d}h {:02d}m {:02d}s'.format(
wall_time // 86400, (wall_time % 86400) // 3600,
(wall_time % 3600) // 60, wall_time % 60)
def flush(self):
'''Flush out all cached state.'''
flush_start = time.time()
last_flush = self.last_flush
tx_diff = self.tx_count - self.db_tx_count
height_diff = self.height + 1 - self.db_height
self.logger.info('starting flush {:,d} txs and {:,d} blocks'
.format(tx_diff, height_diff))
8 years ago
# Write out the files to the FS before flushing to the DB. If
# the DB transaction fails, the files being too long doesn't
# matter. But if writing the files fails we do not want to
# have updated the DB. Flush state last as it reads the wall
# time.
self.flush_to_fs()
8 years ago
with self.db.write_batch(transaction=True) as batch:
self.utxo_cache.flush(batch)
self.flush_history(batch)
self.flush_state(batch)
self.logger.info('committing transaction...')
# Update and put the wall time again - otherwise we drop the
# time it takes leveldb to commit the batch
self.update_wall_time(self.db)
flush_time = int(self.last_flush - flush_start)
self.logger.info('flushed in {:,d}s to height {:,d} tx count {:,d} '
'flush count {:,d}'
.format(flush_time, self.height, self.tx_count,
self.flush_count))
txs_per_sec = int(self.tx_count / self.wall_time)
this_txs_per_sec = int(tx_diff / (self.last_flush - last_flush))
self.logger.info('tx/s since genesis: {:,d} since last flush: {:,d} '
'sync time {}'
.format(txs_per_sec, this_txs_per_sec,
8 years ago
self.formatted_wall_time()))
def flush_to_fs(self):
'''Flush the things stored on the filesystem.'''
self.write_headers()
self.write_tx_counts()
self.write_tx_hashes()
os.sync()
def update_wall_time(self, dest):
'''Put the wall time to dest - a DB or batch.'''
now = time.time()
self.wall_time += now - self.last_flush
self.last_flush = now
dest.put(self.WALL_TIME_KEY, to_4_bytes(int(self.wall_time)))
def flush_state(self, batch):
self.db_tx_count = self.tx_count
self.db_height = self.height + 1
batch.put(self.HEIGHT_KEY, to_4_bytes(self.db_height))
batch.put(self.TX_COUNT_KEY, to_4_bytes(self.db_tx_count))
batch.put(self.FLUSH_COUNT_KEY, to_4_bytes(self.flush_count))
batch.put(self.TIP_KEY, unhexlify(self.tip))
self.update_wall_time(batch)
self.flush_count += 1
def flush_history(self, batch):
8 years ago
# Drop any None entry
self.history.pop(None, None)
flush_id = struct.pack('>H', self.flush_count)
for hash168, hist in self.history.items():
key = b'H' + hash168 + flush_id
batch.put(key, array.array('I', hist).tobytes())
self.logger.info('flushed {:,d} history entries ({:,d} MB)...'
.format(self.history_size,
self.history_size * 4 // 1048576))
self.history = defaultdict(list)
self.history_size = 0
8 years ago
def open_file(self, filename, truncate=False, create=False):
try:
return open(filename, 'wb+' if truncate else 'rb+')
except FileNotFoundError:
if create:
return open(filename, 'wb+')
raise
def read_headers(self, height, count):
header_len = self.coin.HEADER_LEN
self.headers_file.seek(height * header_len)
return self.headers_file.read(count * header_len)
def write_headers(self):
headers = b''.join(self.headers)
header_len = self.coin.HEADER_LEN
assert len(headers) % header_len == 0
self.headers_file.seek(self.db_height * header_len)
self.headers_file.write(headers)
self.headers_file.flush()
self.headers = []
def write_tx_counts(self):
self.txcount_file.seek(self.db_height * self.tx_counts.itemsize)
self.txcount_file.write(self.tx_counts[self.db_height: self.height + 1])
self.txcount_file.flush()
def write_tx_hashes(self):
hash_blob = b''.join(itertools.chain(*self.tx_hashes))
assert len(hash_blob) % 32 == 0
assert self.tx_hash_file_size % 32 == 0
hashes = memoryview(hash_blob)
cursor = 0
file_pos = self.db_tx_count * 32
while cursor < len(hashes):
file_num, offset = divmod(file_pos, self.tx_hash_file_size)
size = min(len(hashes) - cursor, self.tx_hash_file_size - offset)
filename = 'hashes{:05d}'.format(file_num)
with self.open_file(filename, create=True) as f:
f.seek(offset)
f.write(hashes[cursor:cursor + size])
cursor += size
file_pos += size
self.tx_hashes = []
def process_block(self, block):
self.headers.append(block[:self.coin.HEADER_LEN])
tx_hashes, txs = self.coin.read_block(block)
self.height += 1
assert len(self.tx_counts) == self.height
# These both need to be updated before calling process_tx().
# It uses them for tx hash lookup
self.tx_hashes.append(tx_hashes)
self.tx_counts.append(self.tx_count + len(txs))
for tx_hash, tx in zip(tx_hashes, txs):
self.process_tx(tx_hash, tx)
# Flush if we're getting full
if self.utxo_cache.size_MB() + hist_MB > self.flush_MB:
8 years ago
self.flush()
def process_tx(self, tx_hash, tx):
cache = self.utxo_cache
tx_num = self.tx_count
# Add the outputs as new UTXOs; spend the inputs
hash168s = cache.add_many(tx_hash, tx_num, tx.outputs)
8 years ago
if not tx.is_coinbase:
for txin in tx.inputs:
hash168s.add(cache.spend(txin.prevout))
8 years ago
for hash168 in hash168s:
self.history[hash168].append(tx_num)
self.history_size += len(hash168s)
8 years ago
self.tx_count += 1
def get_tx_hash(self, tx_num):
'''Returns the tx_hash and height of a tx number.'''
height = bisect_right(self.tx_counts, tx_num)
# Is this on disk or unflushed?
if height >= self.db_height:
tx_hashes = self.tx_hashes[height - self.db_height]
tx_hash = tx_hashes[tx_num - self.tx_counts[height - 1]]
else:
file_pos = tx_num * 32
file_num, offset = divmod(file_pos, self.tx_hash_file_size)
filename = 'hashes{:05d}'.format(file_num)
with self.open_file(filename) as f:
f.seek(offset)
tx_hash = f.read(32)
return tx_hash, height
@staticmethod
def resolve_limit(limit):
if limit is None:
return -1
assert isinstance(limit, int) and limit >= 0
return limit
def get_history(self, hash168, limit=1000):
'''Generator that returns an unpruned, sorted list of (tx_hash,
height) tuples of transactions that touched the address,
earliest in the blockchain first. Includes both spending and
receiving transactions. By default yields at most 1000 entries.
Set limit to None to get them all.
8 years ago
'''
limit = self.resolve_limit(limit)
prefix = b'H' + hash168
8 years ago
for key, hist in self.db.iterator(prefix=prefix):
a = array.array('I')
8 years ago
a.frombytes(hist)
for tx_num in a:
if limit == 0:
return
yield self.get_tx_hash(tx_num)
limit -= 1
def get_balance(self, hash168):
'''Returns the confirmed balance of an address.'''
return sum(utxo.value for utxo in self.get_utxos(hash168, limit=None))
8 years ago
def get_utxos(self, hash168, limit=1000):
'''Generator that yields all UTXOs for an address sorted in no
particular order. By default yields at most 1000 entries.
Set limit to None to get them all.
8 years ago
'''
limit = self.resolve_limit(limit)
8 years ago
unpack = struct.unpack
prefix = b'u' + hash168
8 years ago
utxos = []
for k, v in self.db.iterator(prefix=prefix):
(tx_pos, ) = unpack('<H', k[-2:])
for n in range(0, len(v), 12):
if limit == 0:
return
8 years ago
(tx_num, ) = unpack('<I', v[n:n+4])
(value, ) = unpack('<Q', v[n+4:n+12])
tx_hash, height = self.get_tx_hash(tx_num)
yield UTXO(tx_num, tx_pos, tx_hash, height, value)
limit -= 1
8 years ago
def get_utxos_sorted(self, hash168):
'''Returns all the UTXOs for an address sorted by height and
position in the block.'''
return sorted(self.get_utxos(hash168, limit=None))