You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1082 lines
40 KiB

# Copyright (c) 2016, Neil Booth
#
# All rights reserved.
#
# See the file "LICENCE" for information about the copyright
# and warranty status of this software.
'''Block prefetcher and chain processor.'''
import array
import asyncio
import itertools
import os
from struct import pack, unpack
import time
from bisect import bisect_left
from collections import defaultdict
from functools import partial
from server.daemon import Daemon, DaemonError
from lib.hash import hash_to_str
from lib.tx import Deserializer
from lib.util import chunks, LoggedClass
import server.db
from server.storage import open_db
# Limits single address history to ~ 65536 * HIST_ENTRIES_PER_KEY entries
HIST_ENTRIES_PER_KEY = 1024
HIST_VALUE_BYTES = HIST_ENTRIES_PER_KEY * 4
NO_HASH_168 = bytes([255]) * 21
NO_CACHE_ENTRY = NO_HASH_168 + bytes(12)
def formatted_time(t):
'''Return a number of seconds as a string in days, hours, mins and
secs.'''
t = int(t)
return '{:d}d {:02d}h {:02d}m {:02d}s'.format(
t // 86400, (t % 86400) // 3600, (t % 3600) // 60, t % 60)
class ChainError(Exception):
pass
class Prefetcher(LoggedClass):
'''Prefetches blocks (in the forward direction only).'''
def __init__(self, daemon, height):
super().__init__()
self.daemon = daemon
self.semaphore = asyncio.Semaphore()
self.queue = asyncio.Queue()
self.queue_size = 0
self.fetched_height = height
self.mempool_hashes = []
# Target cache size. Has little effect on sync time.
self.target_cache_size = 10 * 1024 * 1024
# First fetch to be 10 blocks
self.ave_size = self.target_cache_size // 10
async def clear(self, height):
'''Clear prefetched blocks and restart from the given height.
Used in blockchain reorganisations. This coroutine can be
called asynchronously to the _prefetch coroutine so we must
synchronize.
'''
with await self.semaphore:
while not self.queue.empty():
self.queue.get_nowait()
self.queue_size = 0
self.fetched_height = height
async def get_blocks(self):
'''Returns a list of prefetched blocks and the mempool.'''
blocks, height, size = await self.queue.get()
self.queue_size -= size
if height == self.daemon.cached_height():
return blocks, self.mempool_hashes
else:
return blocks, None
async def main_loop(self):
'''Loop forever polling for more blocks.'''
8 years ago
self.logger.info('starting daemon poll loop...')
while True:
try:
if await self._caught_up():
await asyncio.sleep(5)
else:
await asyncio.sleep(0)
except DaemonError as e:
self.logger.info('ignoring daemon error: {}'.format(e))
async def _caught_up(self):
'''Poll for new blocks and mempool state.
Mempool is only queried if caught up with daemon.'''
with await self.semaphore:
blocks, size = await self._prefetch()
self.fetched_height += len(blocks)
caught_up = self.fetched_height == self.daemon.cached_height()
if caught_up:
self.mempool_hashes = await self.daemon.mempool_hashes()
# Wake up block processor if we have something
if blocks or caught_up:
self.queue.put_nowait((blocks, self.fetched_height, size))
self.queue_size += size
return caught_up
async def _prefetch(self):
'''Prefetch blocks unless the prefetch queue is full.'''
if self.queue_size >= self.target_cache_size:
return [], 0
daemon_height = await self.daemon.height()
cache_room = self.target_cache_size // self.ave_size
# Try and catch up all blocks but limit to room in cache.
# Constrain count to between 0 and 4000 regardless
count = min(daemon_height - self.fetched_height, cache_room)
count = min(4000, max(count, 0))
if not count:
return [], 0
first = self.fetched_height + 1
hex_hashes = await self.daemon.block_hex_hashes(first, count)
blocks = await self.daemon.raw_blocks(hex_hashes)
size = sum(len(block) for block in blocks)
# Update our recent average block size estimate
if count >= 10:
self.ave_size = size // count
else:
self.ave_size = (size + (10 - count) * self.ave_size) // 10
return blocks, size
class ChainReorg(Exception):
'''Raised on a blockchain reorganisation.'''
class MemPool(LoggedClass):
'''Representation of the daemon's mempool.
Updated regularly in caught-up state. Goal is to enable efficient
response to the value() and transactions() calls.
To that end we maintain the following maps:
tx_hash -> [txin_pairs, txout_pairs, unconfirmed]
hash168 -> set of all tx hashes in which the hash168 appears
A pair is a (hash168, value) tuple. Unconfirmed is true if any of the
tx's txins are unconfirmed. tx hashes are hex strings.
'''
def __init__(self, bp):
super().__init__()
self.txs = {}
self.hash168s = defaultdict(set) # None can be a key
self.bp = bp
self.count = -1
async def update(self, hex_hashes):
'''Update state given the current mempool to the passed set of hashes.
Remove transactions that are no longer in our mempool.
Request new transactions we don't have then add to our mempool.
'''
hex_hashes = set(hex_hashes)
touched = set()
missing_utxos = []
initial = self.count < 0
if initial:
self.logger.info('beginning import of {:,d} mempool txs'
.format(len(hex_hashes)))
# Remove gone items
gone = set(self.txs).difference(hex_hashes)
for hex_hash in gone:
txin_pairs, txout_pairs, unconfirmed = self.txs.pop(hex_hash)
hash168s = set(hash168 for hash168, value in txin_pairs)
hash168s.update(hash168 for hash168, value in txout_pairs)
for hash168 in hash168s:
self.hash168s[hash168].remove(hex_hash)
if not self.hash168s[hash168]:
del self.hash168s[hash168]
touched.update(hash168s)
# Get the raw transactions for the new hashes. Ignore the
# ones the daemon no longer has (it will return None). Put
# them into a dictionary of hex hash to deserialized tx.
hex_hashes.difference_update(self.txs)
raw_txs = await self.bp.daemon.getrawtransactions(hex_hashes)
if initial:
self.logger.info('all fetched, now analysing...')
new_txs = {hex_hash: Deserializer(raw_tx).read_tx()
for hex_hash, raw_tx in zip(hex_hashes, raw_txs) if raw_tx}
del raw_txs, hex_hashes
# The mempool is unordered, so process all outputs first so
# that looking for inputs has full info.
script_hash168 = self.bp.coin.hash168_from_script
db_utxo_lookup = self.bp.db_utxo_lookup
def txout_pair(txout):
return (script_hash168(txout.pk_script), txout.value)
for n, (hex_hash, tx) in enumerate(new_txs.items()):
# Yield to process e.g. signals
if n % 500 == 0:
await asyncio.sleep(0)
txout_pairs = [txout_pair(txout) for txout in tx.outputs]
self.txs[hex_hash] = (None, txout_pairs, None)
def txin_info(txin):
hex_hash = hash_to_str(txin.prev_hash)
mempool_entry = self.txs.get(hex_hash)
if mempool_entry:
return mempool_entry[1][txin.prev_idx], True
pair = db_utxo_lookup(txin.prev_hash, txin.prev_idx)
return pair, False
if initial:
next_log = time.time()
self.logger.info('processed outputs, now examining inputs. '
'This can take some time...')
# Now add the inputs
for n, (hex_hash, tx) in enumerate(new_txs.items()):
# Yield to process e.g. signals
8 years ago
if n % 50 == 0:
await asyncio.sleep(0)
if initial and time.time() > next_log:
next_log = time.time() + 20
self.logger.info('{:,d} done ({:d}%)'
.format(n, int(n / len(new_txs) * 100)))
txout_pairs = self.txs[hex_hash][1]
try:
infos = (txin_info(txin) for txin in tx.inputs)
txin_pairs, unconfs = zip(*infos)
except self.bp.MissingUTXOError:
# Drop this TX. If other mempool txs depend on it
# it's harmless - next time the mempool is refreshed
# they'll either be cleaned up or the UTXOs will no
# longer be missing.
del self.txs[hex_hash]
continue
self.txs[hex_hash] = (txin_pairs, txout_pairs, any(unconfs))
# Update touched and self.hash168s for the new tx
for hash168, value in txin_pairs:
self.hash168s[hash168].add(hex_hash)
touched.add(hash168)
for hash168, value in txout_pairs:
self.hash168s[hash168].add(hex_hash)
touched.add(hash168)
if missing_utxos:
self.logger.info('{:,d} txs had missing UTXOs; probably the '
'daemon is a block or two ahead of us.'
.format(len(missing_utxos)))
first = ', '.join('{} / {:,d}'.format(hash_to_str(txin.prev_hash),
txin.prev_idx)
for txin in sorted(missing_utxos)[:3])
self.logger.info('first ones are {}'.format(first))
self.count += 1
if self.count % 25 == 0 or gone:
self.count = 0
self.logger.info('{:,d} txs touching {:,d} addresses'
.format(len(self.txs), len(self.hash168s)))
# Might include a None
return touched
def transactions(self, hash168):
'''Generate (hex_hash, tx_fee, unconfirmed) tuples for mempool
entries for the hash168.
8 years ago
unconfirmed is True if any txin is unconfirmed.
'''
for hex_hash in self.hash168s[hash168]:
txin_pairs, txout_pairs, unconfirmed = self.txs[hex_hash]
tx_fee = (sum(v for hash168, v in txin_pairs)
- sum(v for hash168, v in txout_pairs))
yield (hex_hash, tx_fee, unconfirmed)
def value(self, hash168):
'''Return the unconfirmed amount in the mempool for hash168.
Can be positive or negative.
'''
value = 0
for hex_hash in self.hash168s[hash168]:
txin_pairs, txout_pairs, unconfirmed = self.txs[hex_hash]
value -= sum(v for h168, v in txin_pairs if h168 == hash168)
value += sum(v for h168, v in txout_pairs if h168 == hash168)
return value
class BlockProcessor(server.db.DB):
'''Process blocks and update the DB state to match.
Employ a prefetcher to prefetch blocks in batches for processing.
Coordinate backing up in case of chain reorganisations.
'''
def __init__(self, env):
super().__init__(env)
# These are our state as we move ahead of DB state
self.height = self.db_height
self.tip = self.db_tip
self.tx_count = self.db_tx_count
self.daemon = Daemon(env.daemon_url, env.debug)
self.daemon.debug_set_height(self.height)
self.mempool = MemPool(self)
self.touched = set()
# Meta
self.utxo_MB = env.utxo_MB
self.hist_MB = env.hist_MB
self.next_cache_check = 0
self.reorg_limit = env.reorg_limit
# Headers and tx_hashes have one entry per block
self.history = defaultdict(partial(array.array, 'I'))
self.history_size = 0
self.prefetcher = Prefetcher(self.daemon, self.height)
8 years ago
self.last_flush = time.time()
self.last_flush_tx_count = self.tx_count
# Caches of unflushed items
self.headers = []
self.tx_hashes = []
# UTXO cache
self.utxo_cache = {}
self.db_cache = {}
self.utxo_cache_spends = 0
self.db_deletes = 0
# Log state
self.logger.info('{}/{} height: {:,d} tx count: {:,d} '
'flush count: {:,d} utxo flush count: {:,d} '
'sync time: {}'
.format(self.coin.NAME, self.coin.NET, self.height,
self.tx_count, self.flush_count,
self.utxo_flush_count,
formatted_time(self.wall_time)))
self.logger.info('reorg limit of {:,d} blocks'
.format(self.reorg_limit))
self.logger.info('flushing UTXO cache at {:,d} MB'
.format(self.utxo_MB))
self.logger.info('flushing history cache at {:,d} MB'
.format(self.hist_MB))
self.clean_db()
def start(self):
'''Returns a future that starts the block processor when awaited.'''
return asyncio.gather(self.main_loop(),
self.prefetcher.main_loop())
async def main_loop(self):
'''Main loop for block processing.
Safely flushes the DB on clean shutdown.
'''
try:
while True:
await self._wait_for_update()
await asyncio.sleep(0) # Yield
except asyncio.CancelledError:
self.flush(True)
raise
async def _wait_for_update(self):
'''Wait for the prefetcher to deliver blocks or a mempool update.
Blocks are only processed in the forward direction. The
prefetcher only provides a non-None mempool when caught up.
'''
blocks, mempool_hashes = await self.prefetcher.get_blocks()
caught_up = mempool_hashes is not None
try:
for block in blocks:
self.advance_block(block, caught_up)
await asyncio.sleep(0) # Yield
if caught_up:
await self.caught_up(mempool_hashes)
self.touched = set()
except ChainReorg:
await self.handle_chain_reorg()
async def caught_up(self, mempool_hashes):
'''Called after each deamon poll if caught up.'''
# Caught up to daemon height. Flush everything as queries
# are performed on the DB and not in-memory.
self.flush(True)
if self.first_sync:
self.first_sync = False
self.logger.info('synced to height {:,d}'.format(self.height))
self.touched.update(await self.mempool.update(mempool_hashes))
async def handle_chain_reorg(self):
# First get all state on disk
self.logger.info('chain reorg detected')
self.flush(True)
self.logger.info('finding common height...')
hashes = await self.reorg_hashes()
# Reverse and convert to hex strings.
hashes = [hash_to_str(hash) for hash in reversed(hashes)]
for hex_hashes in chunks(hashes, 50):
blocks = await self.daemon.raw_blocks(hex_hashes)
self.backup_blocks(blocks)
self.logger.info('backed up to height {:,d}'.format(self.height))
await self.prefetcher.clear(self.height)
self.logger.info('prefetcher reset')
async def reorg_hashes(self):
'''Return the list of hashes to back up beacuse of a reorg.
The hashes are returned in order of increasing height.'''
def match_pos(hashes1, hashes2):
for n, (hash1, hash2) in enumerate(zip(hashes1, hashes2)):
if hash1 == hash2:
return n
return -1
start = self.height - 1
count = 1
while start > 0:
hashes = self.fs_block_hashes(start, count)
hex_hashes = [hash_to_str(hash) for hash in hashes]
d_hex_hashes = await self.daemon.block_hex_hashes(start, count)
n = match_pos(hex_hashes, d_hex_hashes)
if n >= 0:
start += n + 1
break
count = min(count * 2, start)
start -= count
# Hashes differ from height 'start'
count = (self.height - start) + 1
self.logger.info('chain was reorganised for {:,d} blocks from '
'height {:,d} to height {:,d}'
.format(count, start, start + count - 1))
return self.fs_block_hashes(start, count)
def clean_db(self):
'''Clean out stale DB items.
Stale DB items are excess history flushed since the most
recent UTXO flush (only happens on unclean shutdown), and aged
undo information.
'''
if self.flush_count < self.utxo_flush_count:
raise ChainError('DB corrupt: flush_count < utxo_flush_count')
with self.db.write_batch() as batch:
if self.flush_count > self.utxo_flush_count:
self.logger.info('DB shut down uncleanly. Scanning for '
'excess history flushes...')
self.remove_excess_history(batch)
self.utxo_flush_count = self.flush_count
self.remove_stale_undo_items(batch)
self.flush_state(batch)
def remove_excess_history(self, batch):
prefix = b'H'
keys = []
for key, hist in self.db.iterator(prefix=prefix):
flush_id, = unpack('>H', key[-2:])
if flush_id > self.utxo_flush_count:
keys.append(key)
self.logger.info('deleting {:,d} history entries'
.format(len(keys)))
for key in keys:
batch.delete(key)
def remove_stale_undo_items(self, batch):
prefix = b'U'
cutoff = self.db_height - self.reorg_limit
keys = []
for key, hist in self.db.iterator(prefix=prefix):
height, = unpack('>I', key[-4:])
if height > cutoff:
break
keys.append(key)
self.logger.info('deleting {:,d} stale undo entries'
.format(len(keys)))
for key in keys:
batch.delete(key)
def flush_state(self, batch):
'''Flush chain state to the batch.'''
now = time.time()
self.wall_time += now - self.last_flush
self.last_flush = now
8 years ago
self.last_flush_tx_count = self.tx_count
self.write_state(batch)
def assert_flushed(self):
'''Asserts state is fully flushed.'''
assert self.tx_count == self.db_tx_count
assert not self.history
assert not self.utxo_cache
assert not self.db_cache
def flush(self, flush_utxos=False, flush_history=None):
'''Flush out cached state.
History is always flushed. UTXOs are flushed if flush_utxos.'''
if self.height == self.db_height:
assert flush_history is None
self.assert_flushed()
return
self.flush_count += 1
flush_start = time.time()
last_flush = self.last_flush
8 years ago
tx_diff = self.tx_count - self.last_flush_tx_count
show_stats = self.first_sync
if self.height > self.db_height:
assert flush_history is None
flush_history = self.flush_history
with self.db.write_batch() as batch:
# History first - fast and frees memory. Flush state last
# as it reads the wall time.
flush_history(batch)
if flush_utxos:
self.flush_utxos(batch)
self.flush_state(batch)
self.logger.info('committing transaction...')
# Update and put the wall time again - otherwise we drop the
# time it took to commit the batch
self.flush_state(self.db)
self.logger.info('flush #{:,d} to height {:,d} txs: {:,d} took {:,d}s'
.format(self.flush_count, self.height, self.tx_count,
int(self.last_flush - flush_start)))
# Catch-up stats
if show_stats:
daemon_height = self.daemon.cached_height()
tx_per_sec = int(self.tx_count / self.wall_time)
this_tx_per_sec = 1 + int(tx_diff / (self.last_flush - last_flush))
if self.height > self.coin.TX_COUNT_HEIGHT:
tx_est = (daemon_height - self.height) * self.coin.TX_PER_BLOCK
else:
tx_est = ((daemon_height - self.coin.TX_COUNT_HEIGHT)
* self.coin.TX_PER_BLOCK
+ (self.coin.TX_COUNT - self.tx_count))
# Damp the enthusiasm
realism = 2.0 - 0.9 * self.height / self.coin.TX_COUNT_HEIGHT
tx_est *= max(realism, 1.0)
self.logger.info('tx/sec since genesis: {:,d}, '
'since last flush: {:,d}'
.format(tx_per_sec, this_tx_per_sec))
self.logger.info('sync time: {} ETA: {}'
.format(formatted_time(self.wall_time),
formatted_time(tx_est / this_tx_per_sec)))
def flush_history(self, batch):
flush_start = time.time()
flush_id = pack('>H', self.flush_count)
for hash168, hist in self.history.items():
key = b'H' + hash168 + flush_id
batch.put(key, hist.tobytes())
self.logger.info('flushed {:,d} history entries for {:,d} addrs '
'in {:,d}s'
.format(self.history_size, len(self.history),
int(time.time() - flush_start)))
self.history = defaultdict(partial(array.array, 'I'))
self.history_size = 0
def fs_flush(self):
'''Flush the things stored on the filesystem.'''
blocks_done = len(self.headers)
prior_tx_count = (self.tx_counts[self.db_height]
if self.db_height >= 0 else 0)
cur_tx_count = self.tx_counts[-1] if self.tx_counts else 0
txs_done = cur_tx_count - prior_tx_count
assert self.db_height + blocks_done == self.height
assert len(self.tx_hashes) == blocks_done
assert len(self.tx_counts) == self.height + 1
assert cur_tx_count == self.tx_count, \
'cur: {:,d} new: {:,d}'.format(cur_tx_count, self.tx_count)
# First the headers
headers = b''.join(self.headers)
header_len = self.coin.HEADER_LEN
self.headers_file.seek((self.db_height + 1) * header_len)
self.headers_file.write(headers)
self.headers_file.flush()
# Then the tx counts
self.txcount_file.seek((self.db_height + 1) * self.tx_counts.itemsize)
self.txcount_file.write(self.tx_counts[self.db_height + 1:])
self.txcount_file.flush()
# Finally the hashes
hashes = memoryview(b''.join(itertools.chain(*self.tx_hashes)))
assert len(hashes) % 32 == 0
assert len(hashes) // 32 == txs_done
cursor = 0
file_pos = prior_tx_count * 32
while cursor < len(hashes):
file_num, offset = divmod(file_pos, self.tx_hash_file_size)
size = min(len(hashes) - cursor, self.tx_hash_file_size - offset)
filename = 'hashes{:04d}'.format(file_num)
with self.open_file(filename, create=True) as f:
f.seek(offset)
f.write(hashes[cursor:cursor + size])
cursor += size
file_pos += size
os.sync()
self.tx_hashes = []
self.headers = []
def backup_history(self, batch, hash168s):
self.logger.info('backing up history to height {:,d} tx_count {:,d}'
.format(self.height, self.tx_count))
# Drop any NO_CACHE entry
hash168s.discard(NO_CACHE_ENTRY)
assert not self.history
nremoves = 0
for hash168 in sorted(hash168s):
prefix = b'H' + hash168
deletes = []
puts = {}
for key, hist in self.db.iterator(prefix=prefix, reverse=True):
a = array.array('I')
a.frombytes(hist)
# Remove all history entries >= self.tx_count
idx = bisect_left(a, self.tx_count)
nremoves += len(a) - idx
if idx > 0:
puts[key] = a[:idx].tobytes()
break
deletes.append(key)
for key in deletes:
batch.delete(key)
for key, value in puts.items():
batch.put(key, value)
self.logger.info('removed {:,d} history entries from {:,d} addresses'
.format(nremoves, len(hash168s)))
def cache_sizes(self):
'''Returns the approximate size of the cache, in MB.'''
# Good average estimates based on traversal of subobjects and
# requesting size from Python (see deep_getsizeof). For
# whatever reason Python O/S mem usage is typically +30% or
# more, so we scale our already bloated object sizes.
one_MB = int(1048576 / 1.3)
utxo_cache_size = len(self.utxo_cache) * 187
db_cache_size = len(self.db_cache) * 105
hist_cache_size = len(self.history) * 180 + self.history_size * 4
8 years ago
tx_hash_size = (self.tx_count - self.db_tx_count) * 74
utxo_MB = (db_deletes_size + utxo_cache_size + tx_hash_size) // one_MB
hist_MB = hist_cache_size // one_MB
8 years ago
self.logger.info('UTXOs: {:,d} deletes: {:,d} '
'UTXOs {:,d}MB hist {:,d}MB'
.format(len(self.utxo_cache), len(self.db_deletes),
utxo_MB, hist_MB))
self.logger.info('our height: {:,d} daemon height: {:,d}'
.format(self.height, self.daemon.cached_height()))
return utxo_MB, hist_MB
def undo_key(self, height):
'''DB key for undo information at the given height.'''
return b'U' + pack('>I', height)
def write_undo_info(self, height, undo_info):
'''Write out undo information for the current height.'''
self.db.put(self.undo_key(height), undo_info)
def read_undo_info(self, height):
'''Read undo information from a file for the current height.'''
return self.db.get(self.undo_key(height))
def fs_advance_block(self, header, tx_hashes, txs):
'''Update unflushed FS state for a new block.'''
prior_tx_count = self.tx_counts[-1] if self.tx_counts else 0
# Cache the new header, tx hashes and cumulative tx count
self.headers.append(header)
self.tx_hashes.append(tx_hashes)
self.tx_counts.append(prior_tx_count + len(txs))
def advance_block(self, block, update_touched):
# We must update the FS cache before calling advance_txs() as
# the UTXO cache uses the FS cache via get_tx_hash() to
# resolve compressed key collisions
header, tx_hashes, txs = self.coin.read_block(block)
prev_hash, header_hash = self.coin.header_hashes(header)
if prev_hash != self.tip:
raise ChainReorg
touched = set()
self.fs_advance_block(header, tx_hashes, txs)
self.tip = header_hash
self.height += 1
undo_info = self.advance_txs(tx_hashes, txs, touched)
if self.daemon.cached_height() - self.height <= self.reorg_limit:
self.write_undo_info(self.height, b''.join(undo_info))
# Check if we're getting full and time to flush?
now = time.time()
if now > self.next_cache_check:
self.next_cache_check = now + 60
utxo_MB, hist_MB = self.cache_sizes()
if utxo_MB >= self.utxo_MB or hist_MB >= self.hist_MB:
self.flush(utxo_MB >= self.utxo_MB)
if update_touched:
self.touched.update(touched)
def advance_txs(self, tx_hashes, txs, touched):
put_utxo = self.utxo_cache.__setitem__
spend_utxo = self.spend_utxo
undo_info = []
# Use local vars for speed in the loops
history = self.history
tx_num = self.tx_count
script_hash168 = self.coin.hash168_from_script
s_pack = pack
for tx, tx_hash in zip(txs, tx_hashes):
hash168s = set()
tx_numb = s_pack('<I', tx_num)
# Spend the inputs
if not tx.is_coinbase:
for txin in tx.inputs:
cache_value = spend_utxo(txin.prev_hash, txin.prev_idx)
undo_info.append(cache_value)
hash168s.add(cache_value[:21])
# Add the new UTXOs
for idx, txout in enumerate(tx.outputs):
# Get the hash168. Ignore scripts we can't grok.
hash168 = script_hash168(txout.pk_script)
if hash168:
hash168s.add(hash168)
put_utxo(tx_hash + s_pack('<H', idx),
hash168 + tx_numb + s_pack('<Q', txout.value))
# Drop any NO_CACHE entry
hash168s.discard(NO_CACHE_ENTRY)
for hash168 in hash168s:
history[hash168].append(tx_num)
self.history_size += len(hash168s)
touched.update(hash168s)
tx_num += 1
self.tx_count = tx_num
return undo_info
def backup_blocks(self, blocks):
'''Backup the blocks and flush.
The blocks should be in order of decreasing height.
A flush is performed once the blocks are backed up.
'''
self.logger.info('backing up {:,d} blocks'.format(len(blocks)))
self.assert_flushed()
touched = set()
for block in blocks:
header, tx_hashes, txs = self.coin.read_block(block)
prev_hash, header_hash = self.coin.header_hashes(header)
if header_hash != self.tip:
raise ChainError('backup block {} is not tip {} at height {:,d}'
.format(hash_to_str(header_hash),
hash_to_str(self.tip), self.height))
self.backup_txs(tx_hashes, txs, touched)
self.tip = prev_hash
assert self.height >= 0
self.height -= 1
assert not self.headers
assert not self.tx_hashes
self.logger.info('backed up to height {:,d}'.format(self.height))
self.touched.update(touched)
flush_history = partial(self.backup_history, hash168s=touched)
self.flush(True, flush_history=flush_history)
def backup_txs(self, tx_hashes, txs, touched):
# Prevout values, in order down the block (coinbase first if present)
# undo_info is in reverse block order
undo_info = self.read_undo_info(self.height)
n = len(undo_info)
# Use local vars for speed in the loops
s_pack = pack
put_utxo = self.utxo_cache.__setitem__
spend_utxo = self.spend_utxo
rtxs = reversed(txs)
rtx_hashes = reversed(tx_hashes)
for tx_hash, tx in zip(rtx_hashes, rtxs):
# Spend the outputs
for idx, txout in enumerate(tx.outputs):
cache_value = spend_utxo(tx_hash, idx)
touched.add(cache_value[:21])
# Restore the inputs
if not tx.is_coinbase:
for txin in reversed(tx.inputs):
n -= 33
undo_item = undo_info[n:n + 33]
put_utxo(txin.prev_hash + s_pack('<H', txin.prev_idx),
undo_item)
touched.add(undo_item[:21])
assert n == 0
self.tx_count -= len(txs)
'''An in-memory UTXO cache, representing all changes to UTXO state
since the last DB flush.
We want to store millions of these in memory for optimal
performance during initial sync, because then it is possible to
spend UTXOs without ever going to the database (other than as an
entry in the address history, and there is only one such entry per
TX not per UTXO). So store them in a Python dictionary with
binary keys and values.
Key: TX_HASH + TX_IDX (32 + 2 = 34 bytes)
Value: HASH168 + TX_NUM + VALUE (21 + 4 + 8 = 33 bytes)
That's 67 bytes of raw data. Python dictionary overhead means
each entry actually uses about 187 bytes of memory. So almost
11.5 million UTXOs can fit in 2GB of RAM. There are approximately
42 million UTXOs on bitcoin mainnet at height 433,000.
Semantics:
add: Add it to the cache dictionary.
spend: Remove it if in the cache dictionary. Otherwise it's
been flushed to the DB. Each UTXO is responsible for two
entries in the DB. Mark them for deletion in the next
cache flush.
The UTXO database format has to be able to do two things efficiently:
1. Given an address be able to list its UTXOs and their values
so its balance can be efficiently computed.
2. When processing transactions, for each prevout spent - a (tx_hash,
idx) pair - we have to be able to remove it from the DB. To send
notifications to clients we also need to know any address it paid
to.
To this end we maintain two "tables", one for each point above:
1. Key: b'u' + address_hash168 + tx_num + tx_idx
Value: the UTXO value as a 64-bit unsigned integer
2. Key: b'h' + compressed_tx_hash + tx_idx
Value: [address_hash168 + tx_num]
The compressed tx hash is just the first few bytes of the hash of
the tx in which the UTXO was created. As this is not unique there
will are potential collisions when saving and looking up UTXOs;
hence why the second table has a list as its value. The collision
can be resolved with the tx_num. The collision rate is almost
zero (I believe there are around 100 collisions in the whole
bitcoin blockchain).
'''
def spend_utxo(self, tx_hash, tx_idx):
'''Spend a UTXO and return the 33-byte value.
If the UTXO is not in the cache it may be on disk.
'''
# Fast track is it being in the cache
idx_packed = pack('<H', tx_idx)
cache_value = self.utxo_cache.pop(tx_hash + idx_packed, None)
if cache_value:
self.utxo_cache_spends += 1
return cache_value
# Spend it from the DB. Read the UTXO through the cache
# because compressed keys can collide.
# The 4 is the COMPRESSED_TX_HASH_LEN
db_key = b'h' + tx_hash[:4] + idx_packed
db_value = self.db_cache_get(db_key)
if db_value is None:
# Probably a strange UTXO
return NO_CACHE_ENTRY
# FIXME: this matches what we did previously but until we store
# all UTXOs isn't safe
if len(db_value) == 25:
udb_key = b'u' + db_value + idx_packed
utxo_value_packed = self.db.get(udb_key)
if utxo_value_packed:
# Remove the UTXO from both tables
self.db_deletes += 1
self.db_cache[db_key] = None
self.db_cache[udb_key] = None
return db_value + utxo_value_packed
# Fall through to below
assert len(db_value) % 25 == 0
# Find which entry, if any, the TX_HASH matches.
for n in range(0, len(db_value), 25):
tx_num, = unpack('<I', db_value[n+21:n+25])
hash, height = self.get_tx_hash(tx_num)
if hash == tx_hash:
match = db_value[n:n+25]
udb_key = b'u' + match + idx_packed
utxo_value_packed = self.db.get(udb_key)
if utxo_value_packed:
# Remove the UTXO from both tables
self.db_deletes += 1
self.db_cache[db_key] = db_value[:n] + db_value[n + 25:]
self.db_cache[udb_key] = None
return match + utxo_value_packed
# Uh-oh, this should not happen...
raise self.DBError('UTXO {} / {:,d} not found, key {}'
.format(hash_to_str(tx_hash), tx_idx,
bytes(key).hex()))
return NO_CACHE_ENTRY
def db_cache_get(self, key):
'''Fetch a 'h' value from the DB through our write cache.'''
value = self.db_cache.get(key)
if value:
return value
return self.db.get(key)
def flush_utxos(self, batch):
'''Flush the cached DB writes and UTXO set to the batch.'''
# Care is needed because the writes generated by flushing the
# UTXO state may have keys in common with our write cache or
# may be in the DB already.
8 years ago
self.logger.info('flushing {:,d} blocks with {:,d} txs'
.format(self.height - self.db_height,
self.tx_count - self.db_tx_count))
self.logger.info('UTXO cache adds: {:,d} spends: {:,d} '
'DB spends: {:,d}'
.format(len(self.utxo_cache) + self.utxo_cache_spends,
self.utxo_cache_spends,
len(self.db_deletes) // 2))
fs_flush_start = time.time()
self.fs_flush()
fs_flush_end = time.time()
self.logger.info('FS flush took {:.1f} seconds'
.format(fs_flush_end - fs_flush_start))
collisions = 0
new_utxos = len(self.utxo_cache)
for cache_key, cache_value in self.utxo_cache.items():
# Frist write to the hash168 lookup table
# The 4 is the COMPRESSED_TX_HASH_LEN
db_key = b'h' + cache_key[:4] + cache_key[-2:]
prior_value = self.db_cache_get(db_key)
if prior_value: # Should rarely happen
collisions += 1
self.db_cache[db_key] = prior_value + cache_value[:25]
else:
self.db_cache[db_key] = cache_value[:25]
# Next write the UTXO table
db_key = b'u' + cache_value[:25] + cache_key[-2:]
self.db_cache[db_key] = cache_value[-8:]
# GC-ing this now can only help the levelDB write.
self.utxo_cache = {}
# Now we can update to the batch.
for key, value in self.db_cache.items():
if value:
batch.put(key, value)
else: # b'' or None
batch.delete(key)
adds = new_utxos + self.utxo_cache_spends
self.db_cache = {}
self.utxo_cache_spends = self.db_deletes = 0
self.utxo_flush_count = self.flush_count
self.db_tx_count = self.tx_count
self.db_height = self.height
self.db_tip = self.tip
8 years ago
self.logger.info('UTXO flush took {:.1f} seconds'
.format(time.time() - fs_flush_end))
def read_headers(self, start, count):
# Read some from disk
disk_count = min(count, self.db_height + 1 - start)
result = self.fs_read_headers(start, disk_count)
count -= disk_count
start += disk_count
# The rest from memory
if count:
start -= self.db_height + 1
if not (count >= 0 and start + count <= len(self.headers)):
raise ChainError('{:,d} headers starting at {:,d} not on disk'
.format(count, start))
result += b''.join(self.headers[start: start + count])
return result
def get_tx_hash(self, tx_num):
'''Returns the tx_hash and height of a tx number.'''
tx_hash, tx_height = self.fs_tx_hash(tx_num)
# Is this unflushed?
if tx_hash is None:
tx_hashes = self.tx_hashes[tx_height - (self.db_height + 1)]
tx_hash = tx_hashes[tx_num - self.tx_counts[tx_height - 1]]
return tx_hash, tx_height
def mempool_transactions(self, hash168):
'''Generate (hex_hash, tx_fee, unconfirmed) tuples for mempool
entries for the hash168.
8 years ago
unconfirmed is True if any txin is unconfirmed.
'''
return self.mempool.transactions(hash168)
def mempool_value(self, hash168):
'''Return the unconfirmed amount in the mempool for hash168.
Can be positive or negative.
'''
return self.mempool.value(hash168)