# Copyright (c) 2016, Neil Booth # # All rights reserved. # # See the file "LICENCE" for information about the copyright # and warranty status of this software. '''Miscellaneous utility classes and functions.''' import array import asyncio import inspect import logging import sys from collections import Container, Mapping class LoggedClass(object): def __init__(self): self.logger = logging.getLogger(self.__class__.__name__) self.logger.setLevel(logging.INFO) self.log_prefix = '' self.throttled = 0 def log_info(self, msg, throttle=False): # Prevent annoying log messages by throttling them if there # are too many in a short period if throttle: self.throttled += 1 if self.throttled > 3: return if self.throttled == 3: msg += ' (throttling later logs)' self.logger.info(self.log_prefix + msg) def log_warning(self, msg): self.logger.warning(self.log_prefix + msg) def log_error(self, msg): self.logger.error(self.log_prefix + msg) # Method decorator. To be used for calculations that will always # deliver the same result. The method cannot take any arguments # and should be accessed as an attribute. class cachedproperty(object): def __init__(self, f): self.f = f def __get__(self, obj, type): obj = obj or type value = self.f(obj) setattr(obj, self.f.__name__, value) return value def formatted_time(t): '''Return a number of seconds as a string in days, hours, mins and secs.''' t = int(t) return '{:d}d {:02d}h {:02d}m {:02d}s'.format( t // 86400, (t % 86400) // 3600, (t % 3600) // 60, t % 60) def deep_getsizeof(obj): """Find the memory footprint of a Python object. Based on code from code.tutsplus.com: http://goo.gl/fZ0DXK This is a recursive function that drills down a Python object graph like a dictionary holding nested dictionaries with lists of lists and tuples and sets. The sys.getsizeof function does a shallow size of only. It counts each object inside a container as pointer only regardless of how big it really is. """ ids = set() def size(o): if id(o) in ids: return 0 r = sys.getsizeof(o) ids.add(id(o)) if isinstance(o, (str, bytes, bytearray, array.array)): return r if isinstance(o, Mapping): return r + sum(size(k) + size(v) for k, v in o.items()) if isinstance(o, Container): return r + sum(size(x) for x in o) return r return size(obj) def subclasses(base_class, strict=True): '''Return a list of subclasses of base_class in its module.''' def select(obj): return (inspect.isclass(obj) and issubclass(obj, base_class) and (not strict or obj != base_class)) pairs = inspect.getmembers(sys.modules[base_class.__module__], select) return [pair[1] for pair in pairs] def chunks(items, size): '''Break up items, an iterable, into chunks of length size.''' for i in range(0, len(items), size): yield items[i: i + size] def bytes_to_int(be_bytes): '''Interprets a big-endian sequence of bytes as an integer''' return int.from_bytes(be_bytes, 'big') def int_to_bytes(value): '''Converts an integer to a big-endian sequence of bytes''' return value.to_bytes((value.bit_length() + 7) // 8, 'big') def increment_byte_string(bs): '''Return the lexicographically next byte string of the same length. Return None if there is none (when the input is all 0xff bytes).''' for n in range(1, len(bs) + 1): if bs[-n] != 0xff: return bs[:-n] + bytes([bs[-n] + 1]) + bytes(n - 1) return None class LogicalFile(object): '''A logical binary file split across several separate files on disk.''' def __init__(self, prefix, digits, file_size): digit_fmt = '{' + ':0{:d}d'.format(digits) + '}' self.filename_fmt = prefix + digit_fmt self.file_size = file_size def read(self, start, size=-1): '''Read up to size bytes from the virtual file, starting at offset start, and return them. If size is -1 all bytes are read.''' parts = [] while size != 0: try: with self.open_file(start, False) as f: part = f.read(size) if not part: break except FileNotFoundError: break parts.append(part) start += len(part) if size > 0: size -= len(part) return b''.join(parts) def write(self, start, b): '''Write the bytes-like object, b, to the underlying virtual file.''' while b: size = min(len(b), self.file_size - (start % self.file_size)) with self.open_file(start, True) as f: f.write(b if size == len(b) else b[:size]) b = b[size:] start += size def open_file(self, start, create): '''Open the virtual file and seek to start. Return a file handle. Raise FileNotFoundError if the file does not exist and create is False. ''' file_num, offset = divmod(start, self.file_size) filename = self.filename_fmt.format(file_num) try: f= open(filename, 'rb+') except FileNotFoundError: if not create: raise f = open(filename, 'wb+') f.seek(offset) return f