# Copyright (c) 2016-2017, Neil Booth # # All rights reserved. # # See the file "LICENCE" for information about the copyright # and warranty status of this software. '''Block prefetcher and chain processor.''' import array import asyncio from struct import pack, unpack import time from collections import defaultdict from functools import partial from server.daemon import DaemonError from server.version import VERSION from lib.hash import hash_to_str from lib.util import chunks, formatted_time, LoggedClass import server.db class Prefetcher(LoggedClass): '''Prefetches blocks (in the forward direction only).''' def __init__(self, bp): super().__init__() self.bp = bp self.caught_up = False # Access to fetched_height should be protected by the semaphore self.fetched_height = None self.semaphore = asyncio.Semaphore() self.refill_event = asyncio.Event() # The prefetched block cache size. The min cache size has # little effect on sync time. self.cache_size = 0 self.min_cache_size = 10 * 1024 * 1024 # This makes the first fetch be 10 blocks self.ave_size = self.min_cache_size // 10 async def main_loop(self): '''Loop forever polling for more blocks.''' while True: try: # Sleep a while if there is nothing to prefetch await self.refill_event.wait() if not await self._prefetch_blocks(): await asyncio.sleep(5) except DaemonError as e: self.logger.info('ignoring daemon error: {}'.format(e)) def processing_blocks(self, blocks): '''Called by block processor when it is processing queued blocks.''' self.cache_size -= sum(len(block) for block in blocks) if self.cache_size < self.min_cache_size: self.refill_event.set() async def reset_height(self): '''Reset to prefetch blocks from the block processor's height. Used in blockchain reorganisations. This coroutine can be called asynchronously to the _prefetch coroutine so we must synchronize with a semaphore.''' with await self.semaphore: self.fetched_height = self.bp.height self.refill_event.set() daemon_height = await self.bp.daemon.height() behind = daemon_height - self.bp.height if behind > 0: self.logger.info('catching up to daemon height {:,d} ' '({:,d} blocks behind)' .format(daemon_height, behind)) else: self.logger.info('caught up to daemon height {:,d}' .format(daemon_height)) async def _prefetch_blocks(self): '''Prefetch some blocks and put them on the queue. Repeats until the queue is full or caught up. ''' daemon = self.bp.daemon daemon_height = await daemon.height(self.bp.caught_up_event.is_set()) with await self.semaphore: while self.cache_size < self.min_cache_size: # Try and catch up all blocks but limit to room in cache. # Constrain fetch count to between 0 and 500 regardless; # testnet can be lumpy. cache_room = self.min_cache_size // self.ave_size count = min(daemon_height - self.fetched_height, cache_room) count = min(500, max(count, 0)) if not count: if not self.caught_up: self.caught_up = True self.bp.on_prefetcher_first_caught_up() return False first = self.fetched_height + 1 hex_hashes = await daemon.block_hex_hashes(first, count) if self.caught_up: self.logger.info('new block height {:,d} hash {}' .format(first + count-1, hex_hashes[-1])) blocks = await daemon.raw_blocks(hex_hashes) assert count == len(blocks) # Special handling for genesis block if first == 0: blocks[0] = self.bp.coin.genesis_block(blocks[0]) self.logger.info('verified genesis block with hash {}' .format(hex_hashes[0])) # Update our recent average block size estimate size = sum(len(block) for block in blocks) if count >= 10: self.ave_size = size // count else: self.ave_size = (size + (10 - count) * self.ave_size) // 10 self.bp.on_prefetched_blocks(blocks, first) self.cache_size += size self.fetched_height += count self.refill_event.clear() return True class ChainError(Exception): '''Raised on error processing blocks.''' class BlockProcessor(server.db.DB): '''Process blocks and update the DB state to match. Employ a prefetcher to prefetch blocks in batches for processing. Coordinate backing up in case of chain reorganisations. ''' def __init__(self, env, controller, daemon): super().__init__(env) self.daemon = daemon self.controller = controller # These are our state as we move ahead of DB state self.fs_height = self.db_height self.fs_tx_count = self.db_tx_count self.height = self.db_height self.tip = self.db_tip self.tx_count = self.db_tx_count self.caught_up_event = asyncio.Event() self.task_queue = asyncio.Queue() # Meta self.cache_MB = env.cache_MB self.next_cache_check = 0 self.last_flush = time.time() self.last_flush_tx_count = self.tx_count self.touched = set() # Caches of unflushed items. self.headers = [] self.tx_hashes = [] self.undo_infos = [] self.history = defaultdict(partial(array.array, 'I')) self.history_size = 0 # UTXO cache self.utxo_cache = {} self.db_deletes = [] self.prefetcher = Prefetcher(self) if self.utxo_db.for_sync: self.logger.info('flushing DB cache at {:,d} MB' .format(self.cache_MB)) def add_task(self, task): '''Add the task to our task queue.''' self.task_queue.put_nowait(task) def on_prefetched_blocks(self, blocks, first): '''Called by the prefetcher when it has prefetched some blocks.''' self.add_task(partial(self.check_and_advance_blocks, blocks, first)) def on_prefetcher_first_caught_up(self): '''Called by the prefetcher when it first catches up.''' self.add_task(self.first_caught_up) async def main_loop(self): '''Main loop for block processing.''' self.controller.ensure_future(self.prefetcher.main_loop()) await self.prefetcher.reset_height() while True: task = await self.task_queue.get() await task() def shutdown(self, executor): '''Shutdown cleanly and flush to disk.''' # First stut down the executor; it may be processing a block. # Then we can flush anything remaining to disk. executor.shutdown() if self.height != self.db_height: self.logger.info('flushing state to DB for a clean shutdown...') self.flush(True) async def first_caught_up(self): '''Called when first caught up to daemon after starting.''' # Flush everything with updated first_sync->False state. self.first_sync = False await self.controller.run_in_executor(self.flush, True) if self.utxo_db.for_sync: self.logger.info('{} synced to height {:,d}' .format(VERSION, self.height)) self.open_dbs() self.caught_up_event.set() async def check_and_advance_blocks(self, blocks, first): '''Process the list of blocks passed. Detects and handles reorgs.''' self.prefetcher.processing_blocks(blocks) if first != self.height + 1: # If we prefetched two sets of blocks and the first caused # a reorg this will happen when we try to process the # second. It should be very rare. self.logger.warning('ignoring {:,d} blocks starting height {:,d}, ' 'expected {:,d}' .format(len(blocks), first, self.height + 1)) return headers = [self.coin.block_header(block, first + n) for n, block in enumerate(blocks)] hprevs = [self.coin.header_prevhash(h) for h in headers] chain = [self.tip] + [self.coin.header_hash(h) for h in headers[:-1]] if hprevs == chain: start = time.time() await self.controller.run_in_executor(self.advance_blocks, blocks, headers) if not self.first_sync: s = '' if len(blocks) == 1 else 's' self.logger.info('processed {:,d} block{} in {:.1f}s' .format(len(blocks), s, time.time() - start)) elif hprevs[0] != chain[0]: await self.reorg_chain() else: # It is probably possible but extremely rare that what # bitcoind returns doesn't form a chain because it # reorg-ed the chain as it was processing the batched # block hash requests. Should this happen it's simplest # just to reset the prefetcher and try again. self.logger.warning('daemon blocks do not form a chain; ' 'resetting the prefetcher') await self.prefetcher.reset_height() def force_chain_reorg(self, count): '''Force a reorg of the given number of blocks. Returns True if a reorg is queued, false if not caught up. ''' if self.caught_up_event.is_set(): self.add_task(partial(self.reorg_chain, count=count)) return True return False async def reorg_chain(self, count=None): '''Handle a chain reorganisation. Count is the number of blocks to simulate a reorg, or None for a real reorg.''' if count is None: self.logger.info('chain reorg detected') else: self.logger.info('faking a reorg of {:,d} blocks'.format(count)) await self.controller.run_in_executor(self.flush, True) hashes = await self.reorg_hashes(count) # Reverse and convert to hex strings. hashes = [hash_to_str(hash) for hash in reversed(hashes)] for hex_hashes in chunks(hashes, 50): blocks = await self.daemon.raw_blocks(hex_hashes) await self.controller.run_in_executor(self.backup_blocks, blocks) await self.prefetcher.reset_height() async def reorg_hashes(self, count): '''Return the list of hashes to back up beacuse of a reorg. The hashes are returned in order of increasing height.''' def match_pos(hashes1, hashes2): for n, (hash1, hash2) in enumerate(zip(hashes1, hashes2)): if hash1 == hash2: return n return -1 if count is None: # A real reorg start = self.height - 1 count = 1 while start > 0: hashes = self.fs_block_hashes(start, count) hex_hashes = [hash_to_str(hash) for hash in hashes] d_hex_hashes = await self.daemon.block_hex_hashes(start, count) n = match_pos(hex_hashes, d_hex_hashes) if n >= 0: start += n + 1 break count = min(count * 2, start) start -= count count = (self.height - start) + 1 else: start = (self.height - count) + 1 s = '' if count == 1 else 's' self.logger.info('chain was reorganised replacing {:,d} block{} at ' 'heights {:,d}-{:,d}' .format(count, s, start, start + count - 1)) return self.fs_block_hashes(start, count) def flush_state(self, batch): '''Flush chain state to the batch.''' now = time.time() self.wall_time += now - self.last_flush self.last_flush = now self.last_flush_tx_count = self.tx_count self.write_state(batch) def assert_flushed(self): '''Asserts state is fully flushed.''' assert self.tx_count == self.fs_tx_count == self.db_tx_count assert self.height == self.fs_height == self.db_height assert not self.undo_infos assert not self.history assert not self.utxo_cache assert not self.db_deletes def flush(self, flush_utxos=False): '''Flush out cached state. History is always flushed. UTXOs are flushed if flush_utxos.''' if self.height == self.db_height: self.assert_flushed() return flush_start = time.time() last_flush = self.last_flush tx_diff = self.tx_count - self.last_flush_tx_count # Flush to file system self.fs_flush() fs_end = time.time() if self.utxo_db.for_sync: self.logger.info('flushed to FS in {:.1f}s' .format(fs_end - flush_start)) # History next - it's fast and frees memory self.flush_history(self.history) if self.utxo_db.for_sync: self.logger.info('flushed history in {:.1f}s for {:,d} addrs' .format(time.time() - fs_end, len(self.history))) self.history = defaultdict(partial(array.array, 'I')) self.history_size = 0 # Flush state last as it reads the wall time. with self.utxo_db.write_batch() as batch: if flush_utxos: self.flush_utxos(batch) self.flush_state(batch) # Update and put the wall time again - otherwise we drop the # time it took to commit the batch self.flush_state(self.utxo_db) self.logger.info('flush #{:,d} took {:.1f}s. Height {:,d} txs: {:,d}' .format(self.flush_count, self.last_flush - flush_start, self.height, self.tx_count)) # Catch-up stats if self.utxo_db.for_sync: tx_per_sec = int(self.tx_count / self.wall_time) this_tx_per_sec = 1 + int(tx_diff / (self.last_flush - last_flush)) self.logger.info('tx/sec since genesis: {:,d}, ' 'since last flush: {:,d}' .format(tx_per_sec, this_tx_per_sec)) daemon_height = self.daemon.cached_height() if self.height > self.coin.TX_COUNT_HEIGHT: tx_est = (daemon_height - self.height) * self.coin.TX_PER_BLOCK else: tx_est = ((daemon_height - self.coin.TX_COUNT_HEIGHT) * self.coin.TX_PER_BLOCK + (self.coin.TX_COUNT - self.tx_count)) # Damp the enthusiasm realism = 2.0 - 0.9 * self.height / self.coin.TX_COUNT_HEIGHT tx_est *= max(realism, 1.0) self.logger.info('sync time: {} ETA: {}' .format(formatted_time(self.wall_time), formatted_time(tx_est / this_tx_per_sec))) def fs_flush(self): '''Flush the things stored on the filesystem.''' assert self.fs_height + len(self.headers) == self.height assert self.tx_count == self.tx_counts[-1] if self.tx_counts else 0 self.fs_update(self.fs_height, self.headers, self.tx_hashes) self.fs_height = self.height self.fs_tx_count = self.tx_count self.tx_hashes = [] self.headers = [] def backup_flush(self): '''Like flush() but when backing up. All UTXOs are flushed. hashXs - sequence of hashXs which were touched by backing up. Searched for history entries to remove after the backup height. ''' assert self.height < self.db_height assert not self.history flush_start = time.time() # Backup FS (just move the pointers back) self.fs_height = self.height self.fs_tx_count = self.tx_count assert not self.headers assert not self.tx_hashes # Backup history. self.touched can include other addresses # which is harmless, but remove None. self.touched.discard(None) nremoves = self.backup_history(self.touched) self.logger.info('backing up removed {:,d} history entries' .format(nremoves)) with self.utxo_db.write_batch() as batch: # Flush state last as it reads the wall time. self.flush_utxos(batch) self.flush_state(batch) self.logger.info('backup flush #{:,d} took {:.1f}s. ' 'Height {:,d} txs: {:,d}' .format(self.flush_count, self.last_flush - flush_start, self.height, self.tx_count)) def check_cache_size(self): '''Flush a cache if it gets too big.''' # Good average estimates based on traversal of subobjects and # requesting size from Python (see deep_getsizeof). one_MB = 1000*1000 utxo_cache_size = len(self.utxo_cache) * 205 db_deletes_size = len(self.db_deletes) * 57 hist_cache_size = len(self.history) * 180 + self.history_size * 4 # Roughly ntxs * 32 + nblocks * 42 tx_hash_size = ((self.tx_count - self.fs_tx_count) * 32 + (self.height - self.fs_height) * 42) utxo_MB = (db_deletes_size + utxo_cache_size) // one_MB hist_MB = (hist_cache_size + tx_hash_size) // one_MB self.logger.info('our height: {:,d} daemon: {:,d} ' 'UTXOs {:,d}MB hist {:,d}MB' .format(self.height, self.daemon.cached_height(), utxo_MB, hist_MB)) # Flush history if it takes up over 20% of cache memory. # Flush UTXOs once they take up 80% of cache memory. if utxo_MB + hist_MB >= self.cache_MB or hist_MB >= self.cache_MB // 5: self.flush(utxo_MB >= self.cache_MB * 4 // 5) def advance_blocks(self, blocks, headers): '''Synchronously advance the blocks. It is already verified they correctly connect onto our tip. ''' block_txs = self.coin.block_txs min_height = self.min_undo_height(self.daemon.cached_height()) height = self.height for block in blocks: height += 1 undo_info = self.advance_txs(block_txs(block, height)) if height >= min_height: self.undo_infos.append((undo_info, height)) self.height = height self.headers.extend(headers) self.tip = self.coin.header_hash(headers[-1]) # If caught up, flush everything as client queries are # performed on the DB. if self.caught_up_event.is_set(): self.flush(True) else: self.touched.clear() if time.time() > self.next_cache_check: self.check_cache_size() self.next_cache_check = time.time() + 30 def advance_txs(self, txs): self.tx_hashes.append(b''.join(tx_hash for tx, tx_hash in txs)) # Use local vars for speed in the loops undo_info = [] history = self.history history_size = self.history_size tx_num = self.tx_count script_hashX = self.coin.hashX_from_script s_pack = pack put_utxo = self.utxo_cache.__setitem__ spend_utxo = self.spend_utxo undo_info_append = undo_info.append touched = self.touched for tx, tx_hash in txs: hashXs = set() add_hashX = hashXs.add tx_numb = s_pack('<I', tx_num) # Spend the inputs if not tx.is_coinbase: for txin in tx.inputs: cache_value = spend_utxo(txin.prev_hash, txin.prev_idx) undo_info_append(cache_value) add_hashX(cache_value[:-12]) # Add the new UTXOs for idx, txout in enumerate(tx.outputs): # Get the hashX. Ignore unspendable outputs hashX = script_hashX(txout.pk_script) if hashX: add_hashX(hashX) put_utxo(tx_hash + s_pack('<H', idx), hashX + tx_numb + s_pack('<Q', txout.value)) for hashX in hashXs: history[hashX].append(tx_num) history_size += len(hashXs) touched.update(hashXs) tx_num += 1 self.tx_count = tx_num self.tx_counts.append(tx_num) self.history_size = history_size return undo_info def backup_blocks(self, blocks): '''Backup the blocks and flush. The blocks should be in order of decreasing height, starting at. self.height. A flush is performed once the blocks are backed up. ''' self.assert_flushed() assert self.height >= len(blocks) coin = self.coin for block in blocks: # Check and update self.tip header = coin.block_header(block, self.height) header_hash = coin.header_hash(header) if header_hash != self.tip: raise ChainError('backup block {} not tip {} at height {:,d}' .format(hash_to_str(header_hash), hash_to_str(self.tip), self.height)) self.tip = coin.header_prevhash(header) self.backup_txs(coin.block_txs(block, self.height)) self.height -= 1 self.tx_counts.pop() self.logger.info('backed up to height {:,d}'.format(self.height)) self.backup_flush() def backup_txs(self, txs): # Prevout values, in order down the block (coinbase first if present) # undo_info is in reverse block order undo_info = self.read_undo_info(self.height) if undo_info is None: raise ChainError('no undo information found for height {:,d}' .format(self.height)) n = len(undo_info) # Use local vars for speed in the loops s_pack = pack put_utxo = self.utxo_cache.__setitem__ spend_utxo = self.spend_utxo script_hashX = self.coin.hashX_from_script touched = self.touched undo_entry_len = 12 + self.coin.HASHX_LEN for tx, tx_hash in reversed(txs): for idx, txout in enumerate(tx.outputs): # Spend the TX outputs. Be careful with unspendable # outputs - we didn't save those in the first place. hashX = script_hashX(txout.pk_script) if hashX: cache_value = spend_utxo(tx_hash, idx) touched.add(cache_value[:-12]) # Restore the inputs if not tx.is_coinbase: for txin in reversed(tx.inputs): n -= undo_entry_len undo_item = undo_info[n:n + undo_entry_len] put_utxo(txin.prev_hash + s_pack('<H', txin.prev_idx), undo_item) touched.add(undo_item[:-12]) assert n == 0 self.tx_count -= len(txs) '''An in-memory UTXO cache, representing all changes to UTXO state since the last DB flush. We want to store millions of these in memory for optimal performance during initial sync, because then it is possible to spend UTXOs without ever going to the database (other than as an entry in the address history, and there is only one such entry per TX not per UTXO). So store them in a Python dictionary with binary keys and values. Key: TX_HASH + TX_IDX (32 + 2 = 34 bytes) Value: HASHX + TX_NUM + VALUE (11 + 4 + 8 = 23 bytes) That's 57 bytes of raw data in-memory. Python dictionary overhead means each entry actually uses about 205 bytes of memory. So almost 5 million UTXOs can fit in 1GB of RAM. There are approximately 42 million UTXOs on bitcoin mainnet at height 433,000. Semantics: add: Add it to the cache dictionary. spend: Remove it if in the cache dictionary. Otherwise it's been flushed to the DB. Each UTXO is responsible for two entries in the DB. Mark them for deletion in the next cache flush. The UTXO database format has to be able to do two things efficiently: 1. Given an address be able to list its UTXOs and their values so its balance can be efficiently computed. 2. When processing transactions, for each prevout spent - a (tx_hash, idx) pair - we have to be able to remove it from the DB. To send notifications to clients we also need to know any address it paid to. To this end we maintain two "tables", one for each point above: 1. Key: b'u' + address_hashX + tx_idx + tx_num Value: the UTXO value as a 64-bit unsigned integer 2. Key: b'h' + compressed_tx_hash + tx_idx + tx_num Value: hashX The compressed tx hash is just the first few bytes of the hash of the tx in which the UTXO was created. As this is not unique there will be potential collisions so tx_num is also in the key. When looking up a UTXO the prefix space of the compressed hash needs to be searched and resolved if necessary with the tx_num. The collision rate is low (<0.1%). ''' def spend_utxo(self, tx_hash, tx_idx): '''Spend a UTXO and return the 33-byte value. If the UTXO is not in the cache it must be on disk. We store all UTXOs so not finding one indicates a logic error or DB corruption. ''' # Fast track is it being in the cache idx_packed = pack('<H', tx_idx) cache_value = self.utxo_cache.pop(tx_hash + idx_packed, None) if cache_value: return cache_value # Spend it from the DB. # Key: b'h' + compressed_tx_hash + tx_idx + tx_num # Value: hashX prefix = b'h' + tx_hash[:4] + idx_packed candidates = {db_key: hashX for db_key, hashX in self.utxo_db.iterator(prefix=prefix)} for hdb_key, hashX in candidates.items(): tx_num_packed = hdb_key[-4:] if len(candidates) > 1: tx_num, = unpack('<I', tx_num_packed) hash, height = self.fs_tx_hash(tx_num) if hash != tx_hash: assert hash is not None # Should always be found continue # Key: b'u' + address_hashX + tx_idx + tx_num # Value: the UTXO value as a 64-bit unsigned integer udb_key = b'u' + hashX + hdb_key[-6:] utxo_value_packed = self.utxo_db.get(udb_key) if utxo_value_packed: # Remove both entries for this UTXO self.db_deletes.append(hdb_key) self.db_deletes.append(udb_key) return hashX + tx_num_packed + utxo_value_packed raise ChainError('UTXO {} / {:,d} not found in "h" table' .format(hash_to_str(tx_hash), tx_idx)) def flush_utxos(self, batch): '''Flush the cached DB writes and UTXO set to the batch.''' # Care is needed because the writes generated by flushing the # UTXO state may have keys in common with our write cache or # may be in the DB already. flush_start = time.time() delete_count = len(self.db_deletes) // 2 utxo_cache_len = len(self.utxo_cache) # Spends batch_delete = batch.delete for key in sorted(self.db_deletes): batch_delete(key) self.db_deletes = [] # New UTXOs batch_put = batch.put for cache_key, cache_value in self.utxo_cache.items(): # suffix = tx_idx + tx_num hashX = cache_value[:-12] suffix = cache_key[-2:] + cache_value[-12:-8] batch_put(b'h' + cache_key[:4] + suffix, hashX) batch_put(b'u' + hashX + suffix, cache_value[-8:]) self.utxo_cache = {} # New undo information self.flush_undo_infos(batch_put, self.undo_infos) self.undo_infos = [] if self.utxo_db.for_sync: self.logger.info('flushed {:,d} blocks with {:,d} txs, {:,d} UTXO ' 'adds, {:,d} spends in {:.1f}s, committing...' .format(self.height - self.db_height, self.tx_count - self.db_tx_count, utxo_cache_len, delete_count, time.time() - flush_start)) self.utxo_flush_count = self.flush_count self.db_tx_count = self.tx_count self.db_height = self.height self.db_tip = self.tip