You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

743 lines
27 KiB

# Copyright (c) 2016, Neil Booth
#
# All rights reserved.
#
# See the file "LICENCE" for information about the copyright
# and warranty status of this software.
'''Block prefetcher and chain processor.'''
import array
import asyncio
from struct import pack, unpack
import time
from bisect import bisect_left
from collections import defaultdict
from functools import partial
from server.daemon import Daemon, DaemonError
from server.version import VERSION
from lib.hash import hash_to_str
from lib.util import chunks, formatted_time, LoggedClass
import server.db
class Prefetcher(LoggedClass):
'''Prefetches blocks (in the forward direction only).'''
def __init__(self, tasks, daemon, height):
super().__init__()
self.tasks = tasks
self.daemon = daemon
self.semaphore = asyncio.Semaphore()
self.caught_up = False
self.fetched_height = height
# A list of (blocks, size) pairs. Earliest last.
self.cache = []
self.cache_size = 0
# Target cache size. Has little effect on sync time.
self.target_cache_size = 10 * 1024 * 1024
# This makes the first fetch be 10 blocks
self.ave_size = self.target_cache_size // 10
async def clear(self, height):
'''Clear prefetched blocks and restart from the given height.
Used in blockchain reorganisations. This coroutine can be
called asynchronously to the _prefetch coroutine so we must
synchronize.
'''
with await self.semaphore:
while not self.queue.empty():
self.queue.get_nowait()
self.cache = []
self.cache_size = 0
self.fetched_height = height
self.logger.info('reset to height'.format(height))
def get_blocks(self):
'''Return the next list of blocks from our prefetch cache.'''
# Cache might be empty after a clear()
if self.cache:
blocks, size = self.cache.pop()
self.cache_size -= size
return blocks
return []
async def main_loop(self):
'''Loop forever polling for more blocks.'''
self.logger.info('catching up to daemon height {:,d}...'
.format(await self.daemon.height()))
while True:
try:
secs = 0
if self.cache_size < self.target_cache_size:
if not await self._prefetch():
self.caught_up = True
secs = 5
self.tasks.put_nowait(None)
await asyncio.sleep(secs)
except DaemonError as e:
self.logger.info('ignoring daemon error: {}'.format(e))
except asyncio.CancelledError:
break
async def _prefetch(self):
'''Prefetch blocks unless the prefetch queue is full.'''
daemon_height = await self.daemon.height()
cache_room = self.target_cache_size // self.ave_size
with await self.semaphore:
# Try and catch up all blocks but limit to room in cache.
# Constrain count to between 0 and 4000 regardless
count = min(daemon_height - self.fetched_height, cache_room)
count = min(4000, max(count, 0))
if not count:
return 0
first = self.fetched_height + 1
hex_hashes = await self.daemon.block_hex_hashes(first, count)
if self.caught_up:
self.logger.info('new block height {:,d} hash {}'
.format(first + count - 1, hex_hashes[-1]))
blocks = await self.daemon.raw_blocks(hex_hashes)
size = sum(len(block) for block in blocks)
# Update our recent average block size estimate
if count >= 10:
self.ave_size = size // count
else:
self.ave_size = (size + (10 - count) * self.ave_size) // 10
self.cache.insert(0, (blocks, size))
self.cache_size += size
self.fetched_height += len(blocks)
return count
class ChainError(Exception):
'''Raised on error processing blocks.'''
class ChainReorg(Exception):
'''Raised on a blockchain reorganisation.'''
class BlockProcessor(server.db.DB):
'''Process blocks and update the DB state to match.
Employ a prefetcher to prefetch blocks in batches for processing.
Coordinate backing up in case of chain reorganisations.
'''
def __init__(self, client, env):
super().__init__(env)
self.client = client
# The block processor reads its tasks from this queue
self.tasks = asyncio.Queue()
# These are our state as we move ahead of DB state
self.fs_height = self.db_height
self.fs_tx_count = self.db_tx_count
self.height = self.db_height
self.tip = self.db_tip
self.tx_count = self.db_tx_count
self.daemon = Daemon(self.coin.daemon_urls(env.daemon_url))
self.caught_up = False
self._shutdown = False
self.event = asyncio.Event()
# Meta
self.utxo_MB = env.utxo_MB
self.hist_MB = env.hist_MB
self.next_cache_check = 0
# Headers and tx_hashes have one entry per block
self.history = defaultdict(partial(array.array, 'I'))
self.history_size = 0
self.prefetcher = Prefetcher(self.tasks, self.daemon, self.height)
self.last_flush = time.time()
self.last_flush_tx_count = self.tx_count
# Caches of unflushed items
self.headers = []
self.tx_hashes = []
# UTXO cache
self.utxo_cache = {}
self.db_deletes = []
# Log state
if self.first_sync:
self.logger.info('flushing UTXO cache at {:,d} MB'
.format(self.utxo_MB))
self.logger.info('flushing history cache at {:,d} MB'
.format(self.hist_MB))
async def main_loop(self):
'''Main loop for block processing.'''
# Simulate a reorg if requested
if self.env.force_reorg > 0:
self.logger.info('DEBUG: simulating reorg of {:,d} blocks'
.format(self.env.force_reorg))
await self.handle_chain_reorg(set(), self.env.force_reorg)
while True:
task = await self.tasks.get()
if self._shutdown:
break
blocks = self.prefetcher.get_blocks()
if blocks:
await self.advance_blocks(blocks)
elif not self.caught_up:
self.caught_up = True
self.first_caught_up()
self.flush(True)
def shutdown(self):
'''Call to shut down the block processor.'''
self.logger.info('flushing state to DB for clean shutdown...')
self._shutdown = True
self.tasks.put_nowait(None)
async def advance_blocks(self, blocks):
'''Strip the unspendable genesis coinbase.'''
if self.height == -1:
blocks[0] = blocks[0][:self.coin.HEADER_LEN] + bytes(1)
touched = set()
try:
for block in blocks:
self.advance_block(block, touched)
await asyncio.sleep(0) # Yield
except ChainReorg:
await self.handle_chain_reorg(touched)
if self.caught_up:
# Flush everything as queries are performed on the DB and
# not in-memory.
await asyncio.sleep(0)
self.flush(True)
self.client.notify(touched)
elif time.time() > self.next_cache_check:
self.check_cache_size()
self.next_cache_check = time.time() + 60
def first_caught_up(self):
'''Called when first caught up after starting.'''
self.flush(True)
if self.first_sync:
self.logger.info('{} synced to height {:,d}'
.format(VERSION, self.height))
self.first_sync = False
self.flush_state(self.db)
self.reopen_db(False)
self.event.set()
async def handle_chain_reorg(self, touched, count=None):
'''Handle a chain reorganisation.
Count is the number of blocks to simulate a reorg, or None for
a real reorg.'''
self.logger.info('chain reorg detected')
self.flush(True)
hashes = await self.reorg_hashes(count)
# Reverse and convert to hex strings.
hashes = [hash_to_str(hash) for hash in reversed(hashes)]
for hex_hashes in chunks(hashes, 50):
blocks = await self.daemon.raw_blocks(hex_hashes)
self.backup_blocks(blocks, touched)
await self.prefetcher.clear(self.height)
async def reorg_hashes(self, count):
'''Return the list of hashes to back up beacuse of a reorg.
The hashes are returned in order of increasing height.'''
def match_pos(hashes1, hashes2):
for n, (hash1, hash2) in enumerate(zip(hashes1, hashes2)):
if hash1 == hash2:
return n
return -1
if count is None:
# A real reorg
start = self.height - 1
count = 1
while start > 0:
hashes = self.fs_block_hashes(start, count)
hex_hashes = [hash_to_str(hash) for hash in hashes]
d_hex_hashes = await self.daemon.block_hex_hashes(start, count)
n = match_pos(hex_hashes, d_hex_hashes)
if n >= 0:
start += n + 1
break
count = min(count * 2, start)
start -= count
count = (self.height - start) + 1
else:
start = (self.height - count) + 1
self.logger.info('chain was reorganised: {:,d} blocks at '
'heights {:,d}-{:,d} were replaced'
.format(count, start, start + count - 1))
return self.fs_block_hashes(start, count)
def flush_state(self, batch):
'''Flush chain state to the batch.'''
now = time.time()
self.wall_time += now - self.last_flush
self.last_flush = now
self.last_flush_tx_count = self.tx_count
self.write_state(batch)
def assert_flushed(self):
'''Asserts state is fully flushed.'''
assert self.tx_count == self.fs_tx_count == self.db_tx_count
assert self.height == self.fs_height == self.db_height
assert not self.history
assert not self.utxo_cache
assert not self.db_deletes
def flush(self, flush_utxos=False):
'''Flush out cached state.
History is always flushed. UTXOs are flushed if flush_utxos.'''
if self.height == self.db_height:
self.assert_flushed()
return
self.flush_count += 1
flush_start = time.time()
last_flush = self.last_flush
tx_diff = self.tx_count - self.last_flush_tx_count
with self.db.write_batch() as batch:
# History first - fast and frees memory. Flush state last
# as it reads the wall time.
self.flush_history(batch)
if flush_utxos:
self.flush_utxos(batch)
self.flush_state(batch)
# Update and put the wall time again - otherwise we drop the
# time it took to commit the batch
self.flush_state(self.db)
self.logger.info('flush #{:,d} took {:.1f}s. Height {:,d} txs: {:,d}'
.format(self.flush_count,
self.last_flush - flush_start,
self.height, self.tx_count))
# Catch-up stats
if self.first_sync:
daemon_height = self.daemon.cached_height()
tx_per_sec = int(self.tx_count / self.wall_time)
this_tx_per_sec = 1 + int(tx_diff / (self.last_flush - last_flush))
if self.height > self.coin.TX_COUNT_HEIGHT:
tx_est = (daemon_height - self.height) * self.coin.TX_PER_BLOCK
else:
tx_est = ((daemon_height - self.coin.TX_COUNT_HEIGHT)
* self.coin.TX_PER_BLOCK
+ (self.coin.TX_COUNT - self.tx_count))
# Damp the enthusiasm
realism = 2.0 - 0.9 * self.height / self.coin.TX_COUNT_HEIGHT
tx_est *= max(realism, 1.0)
self.logger.info('tx/sec since genesis: {:,d}, '
'since last flush: {:,d}'
.format(tx_per_sec, this_tx_per_sec))
self.logger.info('sync time: {} ETA: {}'
.format(formatted_time(self.wall_time),
formatted_time(tx_est / this_tx_per_sec)))
def flush_history(self, batch):
fs_start = time.time()
self.fs_flush()
fs_end = time.time()
flush_id = pack('>H', self.flush_count)
for hash168, hist in self.history.items():
key = b'H' + hash168 + flush_id
batch.put(key, hist.tobytes())
if self.first_sync:
self.logger.info('flushed to FS in {:.1f}s, history in {:.1f}s '
'for {:,d} addrs'
.format(fs_end - fs_start, time.time() - fs_end,
len(self.history)))
self.history = defaultdict(partial(array.array, 'I'))
self.history_size = 0
def fs_flush(self):
'''Flush the things stored on the filesystem.'''
assert self.fs_height + len(self.headers) == self.height
assert self.tx_count == self.tx_counts[-1] if self.tx_counts else 0
self.fs_update(self.fs_height, self.headers, self.tx_hashes)
self.fs_height = self.height
self.fs_tx_count = self.tx_count
self.tx_hashes = []
self.headers = []
def backup_flush(self, hash168s):
'''Like flush() but when backing up. All UTXOs are flushed.
hash168s - sequence of hash168s which were touched by backing
up. Searched for history entries to remove after the backup
height.
'''
assert self.height < self.db_height
assert not self.history
self.flush_count += 1
flush_start = time.time()
with self.db.write_batch() as batch:
# Flush state last as it reads the wall time.
self.backup_history(batch, hash168s)
self.flush_utxos(batch)
self.flush_state(batch)
# Update and put the wall time again - otherwise we drop the
# time it took to commit the batch
self.flush_state(self.db)
self.logger.info('backup flush #{:,d} took {:.1f}s. '
'Height {:,d} txs: {:,d}'
.format(self.flush_count,
self.last_flush - flush_start,
self.height, self.tx_count))
def backup_history(self, batch, hash168s):
nremoves = 0
for hash168 in sorted(hash168s):
prefix = b'H' + hash168
deletes = []
puts = {}
for key, hist in self.db.iterator(prefix=prefix, reverse=True):
a = array.array('I')
a.frombytes(hist)
# Remove all history entries >= self.tx_count
idx = bisect_left(a, self.tx_count)
nremoves += len(a) - idx
if idx > 0:
puts[key] = a[:idx].tobytes()
break
deletes.append(key)
for key in deletes:
batch.delete(key)
for key, value in puts.items():
batch.put(key, value)
self.fs_height = self.height
self.fs_tx_count = self.tx_count
assert not self.headers
assert not self.tx_hashes
self.logger.info('backing up removed {:,d} history entries from '
'{:,d} addresses'.format(nremoves, len(hash168s)))
def check_cache_size(self):
'''Flush a cache if it gets too big.'''
# Good average estimates based on traversal of subobjects and
# requesting size from Python (see deep_getsizeof). For
# whatever reason Python O/S mem usage is typically +30% or
# more, so we scale our already bloated object sizes.
one_MB = int(1048576 / 1.3)
utxo_cache_size = len(self.utxo_cache) * 187
db_deletes_size = len(self.db_deletes) * 61
hist_cache_size = len(self.history) * 180 + self.history_size * 4
tx_hash_size = (self.tx_count - self.fs_tx_count) * 74
utxo_MB = (db_deletes_size + utxo_cache_size) // one_MB
hist_MB = (hist_cache_size + tx_hash_size) // one_MB
self.logger.info('our height: {:,d} daemon: {:,d} '
'UTXOs {:,d}MB hist {:,d}MB'
.format(self.height, self.daemon.cached_height(),
utxo_MB, hist_MB))
# Flush if a cache is too big
if utxo_MB >= self.utxo_MB or hist_MB >= self.hist_MB:
self.flush(utxo_MB >= self.utxo_MB)
def fs_advance_block(self, header, tx_hashes, txs):
'''Update unflushed FS state for a new block.'''
prior_tx_count = self.tx_counts[-1] if self.tx_counts else 0
# Cache the new header, tx hashes and cumulative tx count
self.headers.append(header)
self.tx_hashes.append(tx_hashes)
self.tx_counts.append(prior_tx_count + len(txs))
def advance_block(self, block, touched):
header, tx_hashes, txs = self.coin.read_block(block)
if self.tip != self.coin.header_prevhash(header):
raise ChainReorg
self.fs_advance_block(header, tx_hashes, txs)
self.tip = self.coin.header_hash(header)
self.height += 1
undo_info = self.advance_txs(tx_hashes, txs, touched)
if self.daemon.cached_height() - self.height <= self.env.reorg_limit:
self.write_undo_info(self.height, b''.join(undo_info))
def advance_txs(self, tx_hashes, txs, touched):
undo_info = []
# Use local vars for speed in the loops
history = self.history
history_size = self.history_size
tx_num = self.tx_count
script_hash168 = self.coin.hash168_from_script()
s_pack = pack
put_utxo = self.utxo_cache.__setitem__
spend_utxo = self.spend_utxo
undo_info_append = undo_info.append
for tx, tx_hash in zip(txs, tx_hashes):
hash168s = set()
add_hash168 = hash168s.add
tx_numb = s_pack('<I', tx_num)
# Spend the inputs
if not tx.is_coinbase:
for txin in tx.inputs:
cache_value = spend_utxo(txin.prev_hash, txin.prev_idx)
undo_info_append(cache_value)
add_hash168(cache_value[:21])
# Add the new UTXOs
for idx, txout in enumerate(tx.outputs):
# Get the hash168. Ignore unspendable outputs
hash168 = script_hash168(txout.pk_script)
if hash168:
add_hash168(hash168)
put_utxo(tx_hash + s_pack('<H', idx),
hash168 + tx_numb + s_pack('<Q', txout.value))
for hash168 in hash168s:
history[hash168].append(tx_num)
history_size += len(hash168s)
touched.update(hash168s)
tx_num += 1
self.tx_count = tx_num
self.history_size = history_size
return undo_info
def backup_blocks(self, blocks, touched):
'''Backup the blocks and flush.
The blocks should be in order of decreasing height.
A flush is performed once the blocks are backed up.
'''
self.assert_flushed()
for block in blocks:
header, tx_hashes, txs = self.coin.read_block(block)
header_hash = self.coin.header_hash(header)
if header_hash != self.tip:
raise ChainError('backup block {} is not tip {} at height {:,d}'
.format(hash_to_str(header_hash),
hash_to_str(self.tip), self.height))
self.backup_txs(tx_hashes, txs, touched)
self.tip = self.coin.header_prevhash(header)
assert self.height >= 0
self.height -= 1
self.tx_counts.pop()
self.logger.info('backed up to height {:,d}'.format(self.height))
# touched includes those passed into this function. That will
# generally be empty but is harmless if not.
self.backup_flush(touched)
def backup_txs(self, tx_hashes, txs, touched):
# Prevout values, in order down the block (coinbase first if present)
# undo_info is in reverse block order
undo_info = self.read_undo_info(self.height)
if undo_info is None:
raise ChainError('no undo information found for height {:,d}'
.format(self.height))
n = len(undo_info)
# Use local vars for speed in the loops
s_pack = pack
put_utxo = self.utxo_cache.__setitem__
spend_utxo = self.spend_utxo
script_hash168 = self.coin.hash168_from_script()
rtxs = reversed(txs)
rtx_hashes = reversed(tx_hashes)
for tx_hash, tx in zip(rtx_hashes, rtxs):
for idx, txout in enumerate(tx.outputs):
# Spend the TX outputs. Be careful with unspendable
# outputs - we didn't save those in the first place.
hash168 = script_hash168(txout.pk_script)
if hash168:
cache_value = spend_utxo(tx_hash, idx)
touched.add(cache_value[:21])
# Restore the inputs
if not tx.is_coinbase:
for txin in reversed(tx.inputs):
n -= 33
undo_item = undo_info[n:n + 33]
put_utxo(txin.prev_hash + s_pack('<H', txin.prev_idx),
undo_item)
touched.add(undo_item[:21])
assert n == 0
self.tx_count -= len(txs)
'''An in-memory UTXO cache, representing all changes to UTXO state
since the last DB flush.
We want to store millions of these in memory for optimal
performance during initial sync, because then it is possible to
spend UTXOs without ever going to the database (other than as an
entry in the address history, and there is only one such entry per
TX not per UTXO). So store them in a Python dictionary with
binary keys and values.
Key: TX_HASH + TX_IDX (32 + 2 = 34 bytes)
Value: HASH168 + TX_NUM + VALUE (21 + 4 + 8 = 33 bytes)
That's 67 bytes of raw data. Python dictionary overhead means
each entry actually uses about 187 bytes of memory. So almost
11.5 million UTXOs can fit in 2GB of RAM. There are approximately
42 million UTXOs on bitcoin mainnet at height 433,000.
Semantics:
add: Add it to the cache dictionary.
spend: Remove it if in the cache dictionary. Otherwise it's
been flushed to the DB. Each UTXO is responsible for two
entries in the DB. Mark them for deletion in the next
cache flush.
The UTXO database format has to be able to do two things efficiently:
1. Given an address be able to list its UTXOs and their values
so its balance can be efficiently computed.
2. When processing transactions, for each prevout spent - a (tx_hash,
idx) pair - we have to be able to remove it from the DB. To send
notifications to clients we also need to know any address it paid
to.
To this end we maintain two "tables", one for each point above:
1. Key: b'u' + address_hash168 + tx_idx + tx_num
Value: the UTXO value as a 64-bit unsigned integer
2. Key: b'h' + compressed_tx_hash + tx_idx + tx_num
Value: hash168
The compressed tx hash is just the first few bytes of the hash of
the tx in which the UTXO was created. As this is not unique there
will be potential collisions so tx_num is also in the key. When
looking up a UTXO the prefix space of the compressed hash needs to
be searched and resolved if necessary with the tx_num. The
collision rate is low (<0.1%).
'''
def spend_utxo(self, tx_hash, tx_idx):
'''Spend a UTXO and return the 33-byte value.
If the UTXO is not in the cache it must be on disk. We store
all UTXOs so not finding one indicates a logic error or DB
corruption.
'''
# Fast track is it being in the cache
idx_packed = pack('<H', tx_idx)
cache_value = self.utxo_cache.pop(tx_hash + idx_packed, None)
if cache_value:
return cache_value
# Spend it from the DB.
# Key: b'h' + compressed_tx_hash + tx_idx + tx_num
# Value: hash168
prefix = b'h' + tx_hash[:4] + idx_packed
candidates = {db_key: hash168 for db_key, hash168
in self.db.iterator(prefix=prefix)}
for hdb_key, hash168 in candidates.items():
tx_num_packed = hdb_key[-4:]
if len(candidates) > 1:
tx_num, = unpack('<I', tx_num_packed)
hash, height = self.fs_tx_hash(tx_num)
if hash != tx_hash:
assert hash is not None # Should always be found
continue
# Key: b'u' + address_hash168 + tx_idx + tx_num
# Value: the UTXO value as a 64-bit unsigned integer
udb_key = b'u' + hash168 + hdb_key[-6:]
utxo_value_packed = self.db.get(udb_key)
if utxo_value_packed:
# Remove both entries for this UTXO
self.db_deletes.append(hdb_key)
self.db_deletes.append(udb_key)
return hash168 + tx_num_packed + utxo_value_packed
raise ChainError('UTXO {} / {:,d} not found in "h" table'
.format(hash_to_str(tx_hash), tx_idx))
def flush_utxos(self, batch):
'''Flush the cached DB writes and UTXO set to the batch.'''
# Care is needed because the writes generated by flushing the
# UTXO state may have keys in common with our write cache or
# may be in the DB already.
flush_start = time.time()
delete_count = len(self.db_deletes) // 2
batch_delete = batch.delete
for key in self.db_deletes:
batch_delete(key)
self.db_deletes = []
batch_put = batch.put
for cache_key, cache_value in self.utxo_cache.items():
# suffix = tx_num + tx_idx
hash168 = cache_value[:21]
suffix = cache_key[-2:] + cache_value[21:25]
batch_put(b'h' + cache_key[:4] + suffix, hash168)
batch_put(b'u' + hash168 + suffix, cache_value[25:])
if self.first_sync:
self.logger.info('flushed {:,d} blocks with {:,d} txs, {:,d} UTXO '
'adds, {:,d} spends in {:.1f}s, committing...'
.format(self.height - self.db_height,
self.tx_count - self.db_tx_count,
len(self.utxo_cache), delete_count,
time.time() - flush_start))
self.utxo_cache = {}
self.utxo_flush_count = self.flush_count
self.db_tx_count = self.tx_count
self.db_height = self.height
self.db_tip = self.tip