You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

756 lines
29 KiB

# Copyright (c) 2016-2017, Neil Booth
#
# All rights reserved.
#
# See the file "LICENCE" for information about the copyright
# and warranty status of this software.
'''Block prefetcher and chain processor.'''
import array
import asyncio
from struct import pack, unpack
import time
from collections import defaultdict
from functools import partial
from server.daemon import DaemonError
from server.version import VERSION
from lib.hash import hash_to_str
from lib.util import chunks, formatted_time, LoggedClass
import server.db
class Prefetcher(LoggedClass):
'''Prefetches blocks (in the forward direction only).'''
def __init__(self, bp):
super().__init__()
self.bp = bp
self.caught_up = False
# Access to fetched_height should be protected by the semaphore
self.fetched_height = None
self.semaphore = asyncio.Semaphore()
self.refill_event = asyncio.Event()
# The prefetched block cache size. The min cache size has
# little effect on sync time.
self.cache_size = 0
self.min_cache_size = 10 * 1024 * 1024
# This makes the first fetch be 10 blocks
self.ave_size = self.min_cache_size // 10
async def main_loop(self):
'''Loop forever polling for more blocks.'''
while True:
try:
# Sleep a while if there is nothing to prefetch
await self.refill_event.wait()
if not await self._prefetch_blocks():
await asyncio.sleep(5)
except DaemonError as e:
self.logger.info('ignoring daemon error: {}'.format(e))
def processing_blocks(self, blocks):
'''Called by block processor when it is processing queued blocks.'''
self.cache_size -= sum(len(block) for block in blocks)
if self.cache_size < self.min_cache_size:
self.refill_event.set()
async def reset_height(self):
'''Reset to prefetch blocks from the block processor's height.
Used in blockchain reorganisations. This coroutine can be
called asynchronously to the _prefetch coroutine so we must
synchronize with a semaphore.'''
with await self.semaphore:
self.fetched_height = self.bp.height
self.refill_event.set()
daemon_height = await self.bp.daemon.height()
behind = daemon_height - self.bp.height
if behind > 0:
self.logger.info('catching up to daemon height {:,d} '
'({:,d} blocks behind)'
.format(daemon_height, behind))
else:
self.logger.info('caught up to daemon height {:,d}'
.format(daemon_height))
async def _prefetch_blocks(self):
'''Prefetch some blocks and put them on the queue.
Repeats until the queue is full or caught up.
'''
daemon = self.bp.daemon
daemon_height = await daemon.height(self.bp.caught_up_event.is_set())
with await self.semaphore:
while self.cache_size < self.min_cache_size:
# Try and catch up all blocks but limit to room in cache.
# Constrain fetch count to between 0 and 2500 regardless.
cache_room = self.min_cache_size // self.ave_size
count = min(daemon_height - self.fetched_height, cache_room)
count = min(2500, max(count, 0))
if not count:
if not self.caught_up:
self.caught_up = True
self.bp.on_prefetcher_first_caught_up()
return False
first = self.fetched_height + 1
hex_hashes = await daemon.block_hex_hashes(first, count)
if self.caught_up:
self.logger.info('new block height {:,d} hash {}'
.format(first + count-1, hex_hashes[-1]))
blocks = await daemon.raw_blocks(hex_hashes)
assert count == len(blocks)
# Special handling for genesis block
if first == 0:
blocks[0] = self.bp.coin.genesis_block(blocks[0])
self.logger.info('verified genesis block with hash {}'
.format(hex_hashes[0]))
# Update our recent average block size estimate
size = sum(len(block) for block in blocks)
if count >= 10:
self.ave_size = size // count
else:
self.ave_size = (size + (10 - count) * self.ave_size) // 10
self.bp.on_prefetched_blocks(blocks, first)
self.cache_size += size
self.fetched_height += count
self.refill_event.clear()
return True
class ChainError(Exception):
'''Raised on error processing blocks.'''
class BlockProcessor(server.db.DB):
'''Process blocks and update the DB state to match.
Employ a prefetcher to prefetch blocks in batches for processing.
Coordinate backing up in case of chain reorganisations.
'''
def __init__(self, env, daemon):
super().__init__(env)
self.daemon = daemon
# These are our state as we move ahead of DB state
self.fs_height = self.db_height
self.fs_tx_count = self.db_tx_count
self.height = self.db_height
self.tip = self.db_tip
self.tx_count = self.db_tx_count
self.caught_up_event = asyncio.Event()
self.task_queue = asyncio.Queue()
# Meta
self.cache_MB = env.cache_MB
self.next_cache_check = 0
self.last_flush = time.time()
self.last_flush_tx_count = self.tx_count
self.touched = set()
# Caches of unflushed items.
self.headers = []
self.tx_hashes = []
self.undo_infos = []
self.history = defaultdict(partial(array.array, 'I'))
self.history_size = 0
# UTXO cache
self.utxo_cache = {}
self.db_deletes = []
self.prefetcher = Prefetcher(self)
if self.utxo_db.for_sync:
self.logger.info('flushing DB cache at {:,d} MB'
.format(self.cache_MB))
def add_task(self, task):
'''Add the task to our task queue.'''
self.task_queue.put_nowait(task)
def on_prefetched_blocks(self, blocks, first):
'''Called by the prefetcher when it has prefetched some blocks.'''
self.add_task(partial(self.check_and_advance_blocks, blocks, first))
def on_prefetcher_first_caught_up(self):
'''Called by the prefetcher when it first catches up.'''
self.add_task(self.first_caught_up)
async def main_loop(self):
'''Main loop for block processing.'''
await self.prefetcher.reset_height()
while True:
task = await self.task_queue.get()
await task()
def shutdown(self):
if self.height != self.db_height:
self.logger.info('flushing state to DB for a clean shutdown...')
self.flush(True)
self.logger.info('shutdown complete')
async def executor(self, func, *args, **kwargs):
'''Run func taking args in the executor.'''
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, partial(func, *args, **kwargs))
async def first_caught_up(self):
'''Called when first caught up to daemon after starting.'''
# Flush everything with updated first_sync->False state.
self.first_sync = False
await self.executor(self.flush, True)
if self.utxo_db.for_sync:
self.logger.info('{} synced to height {:,d}'
.format(VERSION, self.height))
self.open_dbs()
self.caught_up_event.set()
async def check_and_advance_blocks(self, blocks, first):
'''Process the list of blocks passed. Detects and handles reorgs.'''
self.prefetcher.processing_blocks(blocks)
if first != self.height + 1:
# If we prefetched two sets of blocks and the first caused
# a reorg this will happen when we try to process the
# second. It should be very rare.
self.logger.warning('ignoring {:,d} blocks starting height {:,d}, '
'expected {:,d}'
.format(len(blocks), first, self.height + 1))
return
headers = [self.coin.block_header(block, first + n)
for n, block in enumerate(blocks)]
hprevs = [self.coin.header_prevhash(h) for h in headers]
chain = [self.tip] + [self.coin.header_hash(h) for h in headers[:-1]]
if hprevs == chain:
start = time.time()
await self.executor(self.advance_blocks, blocks, headers)
if not self.first_sync:
s = '' if len(blocks) == 1 else 's'
self.logger.info('processed {:,d} block{} in {:.1f}s'
.format(len(blocks), s,
time.time() - start))
elif hprevs[0] != chain[0]:
await self.reorg_chain()
else:
# It is probably possible but extremely rare that what
# bitcoind returns doesn't form a chain because it
# reorg-ed the chain as it was processing the batched
# block hash requests. Should this happen it's simplest
# just to reset the prefetcher and try again.
self.logger.warning('daemon blocks do not form a chain; '
'resetting the prefetcher')
await self.prefetcher.reset_height()
def force_chain_reorg(self, count):
'''Force a reorg of the given number of blocks.
Returns True if a reorg is queued, false if not caught up.
'''
if self.caught_up_event.is_set():
self.add_task(partial(self.reorg_chain, count=count))
return True
return False
async def reorg_chain(self, count=None):
'''Handle a chain reorganisation.
Count is the number of blocks to simulate a reorg, or None for
a real reorg.'''
if count is None:
self.logger.info('chain reorg detected')
else:
self.logger.info('faking a reorg of {:,d} blocks'.format(count))
await self.executor(self.flush, True)
hashes = await self.reorg_hashes(count)
# Reverse and convert to hex strings.
hashes = [hash_to_str(hash) for hash in reversed(hashes)]
for hex_hashes in chunks(hashes, 50):
blocks = await self.daemon.raw_blocks(hex_hashes)
await self.executor(self.backup_blocks, blocks)
await self.prefetcher.reset_height()
async def reorg_hashes(self, count):
'''Return the list of hashes to back up beacuse of a reorg.
The hashes are returned in order of increasing height.'''
def match_pos(hashes1, hashes2):
for n, (hash1, hash2) in enumerate(zip(hashes1, hashes2)):
if hash1 == hash2:
return n
return -1
if count is None:
# A real reorg
start = self.height - 1
count = 1
while start > 0:
hashes = self.fs_block_hashes(start, count)
hex_hashes = [hash_to_str(hash) for hash in hashes]
d_hex_hashes = await self.daemon.block_hex_hashes(start, count)
n = match_pos(hex_hashes, d_hex_hashes)
if n >= 0:
start += n + 1
break
count = min(count * 2, start)
start -= count
count = (self.height - start) + 1
else:
start = (self.height - count) + 1
s = '' if count == 1 else 's'
self.logger.info('chain was reorganised replacing {:,d} block{} at '
'heights {:,d}-{:,d}'
.format(count, s, start, start + count - 1))
return self.fs_block_hashes(start, count)
def flush_state(self, batch):
'''Flush chain state to the batch.'''
now = time.time()
self.wall_time += now - self.last_flush
self.last_flush = now
self.last_flush_tx_count = self.tx_count
self.write_state(batch)
def assert_flushed(self):
'''Asserts state is fully flushed.'''
assert self.tx_count == self.fs_tx_count == self.db_tx_count
assert self.height == self.fs_height == self.db_height
assert not self.undo_infos
assert not self.history
assert not self.utxo_cache
assert not self.db_deletes
def flush(self, flush_utxos=False):
'''Flush out cached state.
History is always flushed. UTXOs are flushed if flush_utxos.'''
if self.height == self.db_height:
self.assert_flushed()
return
flush_start = time.time()
last_flush = self.last_flush
tx_diff = self.tx_count - self.last_flush_tx_count
# Flush to file system
self.fs_flush()
fs_end = time.time()
if self.utxo_db.for_sync:
self.logger.info('flushed to FS in {:.1f}s'
.format(fs_end - flush_start))
# History next - it's fast and frees memory
self.flush_history(self.history)
if self.utxo_db.for_sync:
self.logger.info('flushed history in {:.1f}s for {:,d} addrs'
.format(time.time() - fs_end, len(self.history)))
self.history = defaultdict(partial(array.array, 'I'))
self.history_size = 0
# Flush state last as it reads the wall time.
with self.utxo_db.write_batch() as batch:
if flush_utxos:
self.flush_utxos(batch)
self.flush_state(batch)
# Update and put the wall time again - otherwise we drop the
# time it took to commit the batch
self.flush_state(self.utxo_db)
self.logger.info('flush #{:,d} took {:.1f}s. Height {:,d} txs: {:,d}'
.format(self.flush_count,
self.last_flush - flush_start,
self.height, self.tx_count))
# Catch-up stats
if self.utxo_db.for_sync:
daemon_height = self.daemon.cached_height()
tx_per_sec = int(self.tx_count / self.wall_time)
this_tx_per_sec = 1 + int(tx_diff / (self.last_flush - last_flush))
if self.height > self.coin.TX_COUNT_HEIGHT:
tx_est = (daemon_height - self.height) * self.coin.TX_PER_BLOCK
else:
tx_est = ((daemon_height - self.coin.TX_COUNT_HEIGHT)
* self.coin.TX_PER_BLOCK
+ (self.coin.TX_COUNT - self.tx_count))
# Damp the enthusiasm
realism = 2.0 - 0.9 * self.height / self.coin.TX_COUNT_HEIGHT
tx_est *= max(realism, 1.0)
self.logger.info('tx/sec since genesis: {:,d}, '
'since last flush: {:,d}'
.format(tx_per_sec, this_tx_per_sec))
self.logger.info('sync time: {} ETA: {}'
.format(formatted_time(self.wall_time),
formatted_time(tx_est / this_tx_per_sec)))
def fs_flush(self):
'''Flush the things stored on the filesystem.'''
assert self.fs_height + len(self.headers) == self.height
assert self.tx_count == self.tx_counts[-1] if self.tx_counts else 0
self.fs_update(self.fs_height, self.headers, self.tx_hashes)
self.fs_height = self.height
self.fs_tx_count = self.tx_count
self.tx_hashes = []
self.headers = []
def backup_flush(self):
'''Like flush() but when backing up. All UTXOs are flushed.
hashXs - sequence of hashXs which were touched by backing
up. Searched for history entries to remove after the backup
height.
'''
assert self.height < self.db_height
assert not self.history
flush_start = time.time()
# Backup FS (just move the pointers back)
self.fs_height = self.height
self.fs_tx_count = self.tx_count
assert not self.headers
assert not self.tx_hashes
# Backup history. self.touched can include other addresses
# which is harmless, but remove None.
self.touched.discard(None)
nremoves = self.backup_history(self.touched)
self.logger.info('backing up removed {:,d} history entries'
.format(nremoves))
with self.utxo_db.write_batch() as batch:
# Flush state last as it reads the wall time.
self.flush_utxos(batch)
self.flush_state(batch)
self.logger.info('backup flush #{:,d} took {:.1f}s. '
'Height {:,d} txs: {:,d}'
.format(self.flush_count,
self.last_flush - flush_start,
self.height, self.tx_count))
def check_cache_size(self):
'''Flush a cache if it gets too big.'''
# Good average estimates based on traversal of subobjects and
# requesting size from Python (see deep_getsizeof).
one_MB = 1000*1000
utxo_cache_size = len(self.utxo_cache) * 205
db_deletes_size = len(self.db_deletes) * 57
hist_cache_size = len(self.history) * 180 + self.history_size * 4
# Roughly ntxs * 32 + nblocks * 42
tx_hash_size = ((self.tx_count - self.fs_tx_count) * 32
+ (self.height - self.fs_height) * 42)
utxo_MB = (db_deletes_size + utxo_cache_size) // one_MB
hist_MB = (hist_cache_size + tx_hash_size) // one_MB
self.logger.info('our height: {:,d} daemon: {:,d} '
'UTXOs {:,d}MB hist {:,d}MB'
.format(self.height, self.daemon.cached_height(),
utxo_MB, hist_MB))
# Flush history if it takes up over 20% of cache memory.
# Flush UTXOs once they take up 80% of cache memory.
if utxo_MB + hist_MB >= self.cache_MB or hist_MB >= self.cache_MB // 5:
self.flush(utxo_MB >= self.cache_MB * 4 // 5)
def advance_blocks(self, blocks, headers):
'''Synchronously advance the blocks.
It is already verified they correctly connect onto our tip.
'''
block_txs = self.coin.block_txs
min_height = self.min_undo_height(self.daemon.cached_height())
height = self.height
for block in blocks:
height += 1
undo_info = self.advance_txs(block_txs(block, height))
if height >= min_height:
self.undo_infos.append((undo_info, height))
self.height = height
self.headers.extend(headers)
self.tip = self.coin.header_hash(headers[-1])
# If caught up, flush everything as client queries are
# performed on the DB.
if self.caught_up_event.is_set():
self.flush(True)
else:
self.touched.clear()
if time.time() > self.next_cache_check:
self.check_cache_size()
self.next_cache_check = time.time() + 30
def advance_txs(self, txs):
self.tx_hashes.append(b''.join(tx_hash for tx, tx_hash in txs))
# Use local vars for speed in the loops
undo_info = []
history = self.history
history_size = self.history_size
tx_num = self.tx_count
script_hashX = self.coin.hashX_from_script
s_pack = pack
put_utxo = self.utxo_cache.__setitem__
spend_utxo = self.spend_utxo
undo_info_append = undo_info.append
touched = self.touched
for tx, tx_hash in txs:
hashXs = set()
add_hashX = hashXs.add
tx_numb = s_pack('<I', tx_num)
# Spend the inputs
if not tx.is_coinbase:
for txin in tx.inputs:
cache_value = spend_utxo(txin.prev_hash, txin.prev_idx)
undo_info_append(cache_value)
add_hashX(cache_value[:-12])
# Add the new UTXOs
for idx, txout in enumerate(tx.outputs):
# Get the hashX. Ignore unspendable outputs
hashX = script_hashX(txout.pk_script)
if hashX:
add_hashX(hashX)
put_utxo(tx_hash + s_pack('<H', idx),
hashX + tx_numb + s_pack('<Q', txout.value))
for hashX in hashXs:
history[hashX].append(tx_num)
history_size += len(hashXs)
touched.update(hashXs)
tx_num += 1
self.tx_count = tx_num
self.tx_counts.append(tx_num)
self.history_size = history_size
return undo_info
def backup_blocks(self, blocks):
'''Backup the blocks and flush.
The blocks should be in order of decreasing height, starting at.
self.height. A flush is performed once the blocks are backed up.
'''
self.assert_flushed()
assert self.height >= len(blocks)
coin = self.coin
for block in blocks:
# Check and update self.tip
header = coin.block_header(block, self.height)
header_hash = coin.header_hash(header)
if header_hash != self.tip:
raise ChainError('backup block {} is not tip {} at height {:,d}'
.format(hash_to_str(header_hash),
hash_to_str(self.tip), self.height))
self.tip = coin.header_prevhash(header)
self.backup_txs(coin.block_txs(block, self.height))
self.height -= 1
self.tx_counts.pop()
self.logger.info('backed up to height {:,d}'.format(self.height))
self.backup_flush()
def backup_txs(self, txs):
# Prevout values, in order down the block (coinbase first if present)
# undo_info is in reverse block order
undo_info = self.read_undo_info(self.height)
if undo_info is None:
raise ChainError('no undo information found for height {:,d}'
.format(self.height))
n = len(undo_info)
# Use local vars for speed in the loops
s_pack = pack
put_utxo = self.utxo_cache.__setitem__
spend_utxo = self.spend_utxo
script_hashX = self.coin.hashX_from_script
touched = self.touched
undo_entry_len = 12 + self.coin.HASHX_LEN
for tx, tx_hash in reversed(txs):
for idx, txout in enumerate(tx.outputs):
# Spend the TX outputs. Be careful with unspendable
# outputs - we didn't save those in the first place.
hashX = script_hashX(txout.pk_script)
if hashX:
cache_value = spend_utxo(tx_hash, idx)
touched.add(cache_value[:-12])
# Restore the inputs
if not tx.is_coinbase:
for txin in reversed(tx.inputs):
n -= undo_entry_len
undo_item = undo_info[n:n + undo_entry_len]
put_utxo(txin.prev_hash + s_pack('<H', txin.prev_idx),
undo_item)
touched.add(undo_item[:-12])
assert n == 0
self.tx_count -= len(txs)
'''An in-memory UTXO cache, representing all changes to UTXO state
since the last DB flush.
We want to store millions of these in memory for optimal
performance during initial sync, because then it is possible to
spend UTXOs without ever going to the database (other than as an
entry in the address history, and there is only one such entry per
TX not per UTXO). So store them in a Python dictionary with
binary keys and values.
Key: TX_HASH + TX_IDX (32 + 2 = 34 bytes)
Value: HASHX + TX_NUM + VALUE (11 + 4 + 8 = 23 bytes)
That's 57 bytes of raw data in-memory. Python dictionary overhead
means each entry actually uses about 205 bytes of memory. So
almost 5 million UTXOs can fit in 1GB of RAM. There are
approximately 42 million UTXOs on bitcoin mainnet at height
433,000.
Semantics:
add: Add it to the cache dictionary.
spend: Remove it if in the cache dictionary. Otherwise it's
been flushed to the DB. Each UTXO is responsible for two
entries in the DB. Mark them for deletion in the next
cache flush.
The UTXO database format has to be able to do two things efficiently:
1. Given an address be able to list its UTXOs and their values
so its balance can be efficiently computed.
2. When processing transactions, for each prevout spent - a (tx_hash,
idx) pair - we have to be able to remove it from the DB. To send
notifications to clients we also need to know any address it paid
to.
To this end we maintain two "tables", one for each point above:
1. Key: b'u' + address_hashX + tx_idx + tx_num
Value: the UTXO value as a 64-bit unsigned integer
2. Key: b'h' + compressed_tx_hash + tx_idx + tx_num
Value: hashX
The compressed tx hash is just the first few bytes of the hash of
the tx in which the UTXO was created. As this is not unique there
will be potential collisions so tx_num is also in the key. When
looking up a UTXO the prefix space of the compressed hash needs to
be searched and resolved if necessary with the tx_num. The
collision rate is low (<0.1%).
'''
def spend_utxo(self, tx_hash, tx_idx):
'''Spend a UTXO and return the 33-byte value.
If the UTXO is not in the cache it must be on disk. We store
all UTXOs so not finding one indicates a logic error or DB
corruption.
'''
# Fast track is it being in the cache
idx_packed = pack('<H', tx_idx)
cache_value = self.utxo_cache.pop(tx_hash + idx_packed, None)
if cache_value:
return cache_value
# Spend it from the DB.
# Key: b'h' + compressed_tx_hash + tx_idx + tx_num
# Value: hashX
prefix = b'h' + tx_hash[:4] + idx_packed
candidates = {db_key: hashX for db_key, hashX
in self.utxo_db.iterator(prefix=prefix)}
for hdb_key, hashX in candidates.items():
tx_num_packed = hdb_key[-4:]
if len(candidates) > 1:
tx_num, = unpack('<I', tx_num_packed)
hash, height = self.fs_tx_hash(tx_num)
if hash != tx_hash:
assert hash is not None # Should always be found
continue
# Key: b'u' + address_hashX + tx_idx + tx_num
# Value: the UTXO value as a 64-bit unsigned integer
udb_key = b'u' + hashX + hdb_key[-6:]
utxo_value_packed = self.utxo_db.get(udb_key)
if utxo_value_packed:
# Remove both entries for this UTXO
self.db_deletes.append(hdb_key)
self.db_deletes.append(udb_key)
return hashX + tx_num_packed + utxo_value_packed
raise ChainError('UTXO {} / {:,d} not found in "h" table'
.format(hash_to_str(tx_hash), tx_idx))
def flush_utxos(self, batch):
'''Flush the cached DB writes and UTXO set to the batch.'''
# Care is needed because the writes generated by flushing the
# UTXO state may have keys in common with our write cache or
# may be in the DB already.
flush_start = time.time()
delete_count = len(self.db_deletes) // 2
utxo_cache_len = len(self.utxo_cache)
# Spends
batch_delete = batch.delete
for key in sorted(self.db_deletes):
batch_delete(key)
self.db_deletes = []
# New UTXOs
batch_put = batch.put
for cache_key, cache_value in self.utxo_cache.items():
# suffix = tx_idx + tx_num
hashX = cache_value[:-12]
suffix = cache_key[-2:] + cache_value[-12:-8]
batch_put(b'h' + cache_key[:4] + suffix, hashX)
batch_put(b'u' + hashX + suffix, cache_value[-8:])
self.utxo_cache = {}
# New undo information
self.flush_undo_infos(batch_put, self.undo_infos)
self.undo_infos = []
if self.utxo_db.for_sync:
self.logger.info('flushed {:,d} blocks with {:,d} txs, {:,d} UTXO '
'adds, {:,d} spends in {:.1f}s, committing...'
.format(self.height - self.db_height,
self.tx_count - self.db_tx_count,
utxo_cache_len, delete_count,
time.time() - flush_start))
self.utxo_flush_count = self.flush_count
self.db_tx_count = self.tx_count
self.db_height = self.height
self.db_tip = self.tip