You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

413 lines
15 KiB

# Copyright (c) 2016, Neil Booth
#
# All rights reserved.
#
# See the file "LICENCE" for information about the copyright
# and warranty status of this software.
'''UTXO and file cache.
During initial sync these cache data and only flush occasionally.
Once synced flushes are performed after processing each block.
'''
import array
import itertools
import os
import struct
from bisect import bisect_right
from lib.util import chunks, LoggedClass
from lib.hash import double_sha256, hash_to_str
# History can hold approx. 65536 * HIST_ENTRIES_PER_KEY entries
HIST_ENTRIES_PER_KEY = 1024
HIST_VALUE_BYTES = HIST_ENTRIES_PER_KEY * 4
ADDR_TX_HASH_LEN = 4
UTXO_TX_HASH_LEN = 4
NO_HASH_168 = bytes([255]) * 21
NO_CACHE_ENTRY = NO_HASH_168 + bytes(12)
class UTXOCache(LoggedClass):
'''An in-memory UTXO cache, representing all changes to UTXO state
since the last DB flush.
We want to store millions, perhaps 10s of millions of these in
memory for optimal performance during initial sync, because then
it is possible to spend UTXOs without ever going to the database
(other than as an entry in the address history, and there is only
one such entry per TX not per UTXO). So store them in a Python
dictionary with binary keys and values.
Key: TX_HASH + TX_IDX (32 + 2 = 34 bytes)
Value: HASH168 + TX_NUM + VALUE (21 + 4 + 8 = 33 bytes)
That's 67 bytes of raw data. Python dictionary overhead means
each entry actually uses about 187 bytes of memory. So almost
11.5 million UTXOs can fit in 2GB of RAM. There are approximately
42 million UTXOs on bitcoin mainnet at height 433,000.
Semantics:
add: Add it to the cache dictionary.
spend: Remove it if in the cache dictionary.
Otherwise it's been flushed to the DB. Each UTXO
is responsible for two entries in the DB stored using
compressed keys. Mark both for deletion in the next
flush of the in-memory UTXO cache.
A UTXO is stored in the DB in 2 "tables":
1. The output value and tx number. Must be keyed with a
hash168 prefix so the unspent outputs and balance of an
arbitrary address can be looked up with a simple key
traversal.
Key: b'u' + hash168 + compressed_tx_hash + tx_idx
Value: a (tx_num, value) pair
2. Given a prevout, we need to be able to look up the UTXO key
to remove it. As is keyed by hash168 and that is not part
of the prevout, we need a hash168 lookup.
Key: b'h' + compressed tx_hash + tx_idx
Value: (hash168, tx_num) pair
The compressed TX hash is just the first few bytes of the hash of
the TX the UTXO is in (and needn't be the same number of bytes in
each table). As this is not unique there will be collisions;
tx_num is stored to resolve them. The collision rate is around
0.02% for the hash168 table, and almost zero for the UTXO table
(there are around 100 collisions in the whole bitcoin blockchain).
'''
def __init__(self, get_tx_hash, db, coin):
super().__init__()
self.get_tx_hash = get_tx_hash
self.coin = coin
self.cache = {}
self.put = self.cache.__setitem__
self.db = db
self.db_cache = {}
# Statistics
self.cache_spends = 0
self.db_deletes = 0
def lookup(self, prev_hash, prev_idx):
'''Given a prevout, return a pair (hash168, value).
If the UTXO is not found, returns (None, None).'''
# Fast track is it being in the cache
idx_packed = struct.pack('<H', prev_idx)
value = self.cache.get(prev_hash + idx_packed, None)
if value:
return value
return self.db_lookup(prev_hash, idx_packed, False)
def db_lookup(self, tx_hash, idx_packed, delete=True):
'''Return a UTXO from the DB. Remove it if delete is True.
Return NO_CACHE_ENTRY if it is not in the DB.'''
hash168 = self.hash168(tx_hash, idx_packed, delete)
if not hash168:
return NO_CACHE_ENTRY
# Read the UTXO through the cache from the disk. We have to
# go through the cache because compressed keys can collide.
key = b'u' + hash168 + tx_hash[:UTXO_TX_HASH_LEN] + idx_packed
data = self.cache_get(key)
if data is None:
# Uh-oh, this should not happen...
self.logger.error('found no UTXO for {} / {:d} key {}'
.format(hash_to_str(tx_hash),
struct.unpack('<H', idx_packed),
bytes(key).hex()))
return NO_CACHE_ENTRY
if len(data) == 12:
if delete:
self.db_deletes += 1
self.cache_delete(key)
return hash168 + data
# Resolve the compressed key collison. These should be
# extremely rare.
assert len(data) % 12 == 0
for n in range(0, len(data), 12):
(tx_num, ) = struct.unpack('<I', data[n:n+4])
this_tx_hash, height = self.get_tx_hash(tx_num)
if tx_hash == this_tx_hash:
result = hash168 + data[n:n+12]
if delete:
self.db_deletes += 1
self.cache_write(key, data[:n] + data[n+12:])
return result
raise Exception('could not resolve UTXO key collision')
def spend(self, prev_hash, prev_idx):
'''Spend a UTXO and return the cache's value.
If the UTXO is not in the cache it must be on disk.
'''
# Fast track is it being in the cache
idx_packed = struct.pack('<H', prev_idx)
value = self.cache.pop(prev_hash + idx_packed, None)
if value:
self.cache_spends += 1
return value
return self.db_lookup(prev_hash, idx_packed)
def hash168(self, tx_hash, idx_packed, delete=True):
'''Return the hash168 paid to by the given TXO.
Look it up in the DB and removes it if delete is True. Return
None if not found.
'''
key = b'h' + tx_hash[:ADDR_TX_HASH_LEN] + idx_packed
data = self.cache_get(key)
if data is None:
# Assuming the DB is not corrupt, if delete is True this
# indicates a successful spend of a non-standard script
# as we don't currently record those
return None
if len(data) == 25:
if delete:
self.cache_delete(key)
return data[:21]
assert len(data) % 25 == 0
# Resolve the compressed key collision using the TX number
for n in range(0, len(data), 25):
(tx_num, ) = struct.unpack('<I', data[n+21:n+25])
my_hash, height = self.get_tx_hash(tx_num)
if my_hash == tx_hash:
if delete:
self.cache_write(key, data[:n] + data[n+25:])
return data[n:n+21]
raise Exception('could not resolve hash168 collision')
def cache_write(self, key, value):
'''Cache write of a (key, value) pair to the DB.'''
assert(bool(value))
self.db_cache[key] = value
def cache_delete(self, key):
'''Cache deletion of a key from the DB.'''
self.db_cache[key] = None
def cache_get(self, key):
'''Fetch a value from the DB through our write cache.'''
value = self.db_cache.get(key)
if value:
return value
return self.db.get(key)
def flush(self, batch):
'''Flush the cached DB writes and UTXO set to the batch.'''
# Care is needed because the writes generated by flushing the
# UTXO state may have keys in common with our write cache or
# may be in the DB already.
hcolls = ucolls = 0
new_utxos = len(self.cache)
for cache_key, cache_value in self.cache.items():
# Frist write to the hash168 lookup table
key = b'h' + cache_key[:ADDR_TX_HASH_LEN] + cache_key[-2:]
value = cache_value[:25]
prior_value = self.cache_get(key)
if prior_value: # Should rarely happen
hcolls += 1
value += prior_value
self.cache_write(key, value)
# Next write the UTXO table
key = (b'u' + cache_value[:21] + cache_key[:UTXO_TX_HASH_LEN]
+ cache_key[-2:])
value = cache_value[-12:]
prior_value = self.cache_get(key)
if prior_value: # Should almost never happen
ucolls += 1
value += prior_value
self.cache_write(key, value)
# GC-ing this now can only help the levelDB write.
self.cache = {}
self.put = self.cache.__setitem__
# Now we can update to the batch.
for key, value in self.db_cache.items():
if value:
batch.put(key, value)
else:
batch.delete(key)
self.db_cache = {}
adds = new_utxos + self.cache_spends
self.logger.info('UTXO cache adds: {:,d} spends: {:,d} '
.format(adds, self.cache_spends))
self.logger.info('UTXO DB adds: {:,d} spends: {:,d}. '
'Collisions: hash168: {:,d} UTXO: {:,d}'
.format(new_utxos, self.db_deletes,
hcolls, ucolls))
self.cache_spends = self.db_deletes = 0
class FSCache(LoggedClass):
def __init__(self, coin, height, tx_count):
super().__init__()
self.coin = coin
self.tx_hash_file_size = 16 * 1024 * 1024
assert self.tx_hash_file_size % 32 == 0
# On-disk values, updated by a flush
self.height = height
# Unflushed items
self.headers = []
self.tx_hashes = []
is_new = height == -1
self.headers_file = self.open_file('headers', is_new)
self.txcount_file = self.open_file('txcount', is_new)
# tx_counts[N] has the cumulative number of txs at the end of
# height N. So tx_counts[0] is 1 - the genesis coinbase
self.tx_counts = array.array('I')
self.txcount_file.seek(0)
self.tx_counts.fromfile(self.txcount_file, self.height + 1)
if self.tx_counts:
assert tx_count == self.tx_counts[-1]
else:
assert tx_count == 0
def open_file(self, filename, create=False):
'''Open the file name. Return its handle.'''
try:
return open(filename, 'rb+')
except FileNotFoundError:
if create:
return open(filename, 'wb+')
raise
def advance_block(self, header, tx_hashes, txs):
'''Update the FS cache for a new block.'''
prior_tx_count = self.tx_counts[-1] if self.tx_counts else 0
# Cache the new header, tx hashes and cumulative tx count
self.headers.append(header)
self.tx_hashes.append(tx_hashes)
self.tx_counts.append(prior_tx_count + len(txs))
def backup_block(self):
'''Revert a block.'''
assert not self.headers
assert not self.tx_hashes
assert self.height >= 0
# Just update in-memory. It doesn't matter if disk files are
# too long, they will be overwritten when advancing.
self.height -= 1
self.tx_counts.pop()
def flush(self, new_height, new_tx_count):
'''Flush the things stored on the filesystem.
The arguments are passed for sanity check assertions only.'''
self.logger.info('flushing to file system')
blocks_done = len(self.headers)
prior_tx_count = self.tx_counts[self.height] if self.height >= 0 else 0
cur_tx_count = self.tx_counts[-1] if self.tx_counts else 0
txs_done = cur_tx_count - prior_tx_count
assert self.height + blocks_done == new_height
assert len(self.tx_hashes) == blocks_done
assert len(self.tx_counts) == new_height + 1
assert cur_tx_count == new_tx_count, \
'cur: {:,d} new: {:,d}'.format(cur_tx_count, new_tx_count)
# First the headers
headers = b''.join(self.headers)
header_len = self.coin.HEADER_LEN
self.headers_file.seek((self.height + 1) * header_len)
self.headers_file.write(headers)
self.headers_file.flush()
# Then the tx counts
self.txcount_file.seek((self.height + 1) * self.tx_counts.itemsize)
self.txcount_file.write(self.tx_counts[self.height + 1:])
self.txcount_file.flush()
# Finally the hashes
hashes = memoryview(b''.join(itertools.chain(*self.tx_hashes)))
assert len(hashes) % 32 == 0
assert len(hashes) // 32 == txs_done
cursor = 0
file_pos = prior_tx_count * 32
while cursor < len(hashes):
file_num, offset = divmod(file_pos, self.tx_hash_file_size)
size = min(len(hashes) - cursor, self.tx_hash_file_size - offset)
filename = 'hashes{:04d}'.format(file_num)
with self.open_file(filename, create=True) as f:
f.seek(offset)
f.write(hashes[cursor:cursor + size])
cursor += size
file_pos += size
os.sync()
self.tx_hashes = []
self.headers = []
self.height += blocks_done
def read_headers(self, start, count):
result = b''
# Read some from disk
disk_count = min(count, self.height + 1 - start)
if disk_count > 0:
header_len = self.coin.HEADER_LEN
assert start >= 0
self.headers_file.seek(start * header_len)
result = self.headers_file.read(disk_count * header_len)
count -= disk_count
start += disk_count
# The rest from memory
start -= self.height + 1
assert count >= 0 and start + count <= len(self.headers)
result += b''.join(self.headers[start: start + count])
return result
def get_tx_hash(self, tx_num):
'''Returns the tx_hash and height of a tx number.'''
height = bisect_right(self.tx_counts, tx_num)
# Is this on disk or unflushed?
if height > self.height:
tx_hashes = self.tx_hashes[height - (self.height + 1)]
tx_hash = tx_hashes[tx_num - self.tx_counts[height - 1]]
else:
file_pos = tx_num * 32
file_num, offset = divmod(file_pos, self.tx_hash_file_size)
filename = 'hashes{:04d}'.format(file_num)
with self.open_file(filename) as f:
f.seek(offset)
tx_hash = f.read(32)
return tx_hash, height
def block_hashes(self, height, count):
headers = self.read_headers(height, count)
hlen = self.coin.HEADER_LEN
return [double_sha256(header) for header in chunks(headers, hlen)]