You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

506 lines
15 KiB

#include "Arith256.h"
#include "Runtime.h"
#include "Type.h"
#include "Endianness.h"
#include <llvm/IR/Function.h>
#include <llvm/IR/IntrinsicInst.h>
10 years ago
#include <iostream>
namespace dev
{
namespace eth
{
namespace jit
{
Arith256::Arith256(llvm::IRBuilder<>& _builder) :
CompilerHelper(_builder)
{
using namespace llvm;
m_result = m_builder.CreateAlloca(Type::Word, nullptr, "arith.result");
m_arg1 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg1");
m_arg2 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg2");
m_arg3 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg3");
using Linkage = GlobalValue::LinkageTypes;
llvm::Type* arg2Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr};
m_mul = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mul", getModule());
}
10 years ago
void Arith256::debug(llvm::Value* _value, char _c)
{
if (!m_debug)
{
llvm::Type* argTypes[] = {Type::Word, m_builder.getInt8Ty()};
m_debug = llvm::Function::Create(llvm::FunctionType::get(Type::Void, argTypes, false), llvm::Function::ExternalLinkage, "debug", getModule());
}
createCall(m_debug, {_value, m_builder.getInt8(_c)});
}
llvm::Function* Arith256::getDivFunc(llvm::Type* _type)
{
auto& func = _type == Type::Word ? m_div : m_div512;
if (!func)
{
// Based of "Improved shift divisor algorithm" from "Software Integer Division" by Microsoft Research
// The following algorithm also handles divisor of value 0 returning 0 for both quotient and reminder
llvm::Type* argTypes[] = {_type, _type};
auto retType = llvm::StructType::get(m_builder.getContext(), llvm::ArrayRef<llvm::Type*>{argTypes});
auto funcName = _type == Type::Word ? "div" : "div512";
func = llvm::Function::Create(llvm::FunctionType::get(retType, argTypes, false), llvm::Function::PrivateLinkage, funcName, getModule());
auto zero = llvm::ConstantInt::get(_type, 0);
auto one = llvm::ConstantInt::get(_type, 1);
auto x = &func->getArgumentList().front();
x->setName("x");
auto yArg = x->getNextNode();
yArg->setName("y");
InsertPointGuard guard{m_builder};
auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), "Entry", func);
auto mainBB = llvm::BasicBlock::Create(m_builder.getContext(), "Main", func);
auto loopBB = llvm::BasicBlock::Create(m_builder.getContext(), "Loop", func);
auto continueBB = llvm::BasicBlock::Create(m_builder.getContext(), "Continue", func);
auto returnBB = llvm::BasicBlock::Create(m_builder.getContext(), "Return", func);
m_builder.SetInsertPoint(entryBB);
auto yNonZero = m_builder.CreateICmpNE(yArg, zero);
auto yLEx = m_builder.CreateICmpULE(yArg, x);
auto r0 = m_builder.CreateSelect(yNonZero, x, zero, "r0");
m_builder.CreateCondBr(m_builder.CreateAnd(yLEx, yNonZero), mainBB, returnBB);
m_builder.SetInsertPoint(mainBB);
auto ctlzIntr = llvm::Intrinsic::getDeclaration(getModule(), llvm::Intrinsic::ctlz, _type);
// both y and r are non-zero
auto yLz = m_builder.CreateCall2(ctlzIntr, yArg, m_builder.getInt1(true), "y.lz");
auto rLz = m_builder.CreateCall2(ctlzIntr, r0, m_builder.getInt1(true), "r.lz");
auto i0 = m_builder.CreateNUWSub(yLz, rLz, "i0");
auto shlBy0 = m_builder.CreateICmpEQ(i0, zero);
auto y0 = m_builder.CreateShl(yArg, i0);
y0 = m_builder.CreateSelect(shlBy0, yArg, y0, "y0"); // Workaround for LLVM bug: shl by 0 produces wrong result
m_builder.CreateBr(loopBB);
m_builder.SetInsertPoint(loopBB);
auto yPhi = m_builder.CreatePHI(_type, 2, "y.phi");
auto rPhi = m_builder.CreatePHI(_type, 2, "r.phi");
auto iPhi = m_builder.CreatePHI(_type, 2, "i.phi");
auto qPhi = m_builder.CreatePHI(_type, 2, "q.phi");
auto rUpdate = m_builder.CreateNUWSub(rPhi, yPhi);
auto qUpdate = m_builder.CreateOr(qPhi, one); // q += 1, q lowest bit is 0
auto rGEy = m_builder.CreateICmpUGE(rPhi, yPhi);
auto r1 = m_builder.CreateSelect(rGEy, rUpdate, rPhi, "r1");
auto q1 = m_builder.CreateSelect(rGEy, qUpdate, qPhi, "q");
auto iZero = m_builder.CreateICmpEQ(iPhi, zero);
m_builder.CreateCondBr(iZero, returnBB, continueBB);
m_builder.SetInsertPoint(continueBB);
auto i2 = m_builder.CreateNUWSub(iPhi, one);
auto q2 = m_builder.CreateShl(q1, one);
auto y2 = m_builder.CreateLShr(yPhi, one);
m_builder.CreateBr(loopBB);
yPhi->addIncoming(y0, mainBB);
yPhi->addIncoming(y2, continueBB);
rPhi->addIncoming(r0, mainBB);
rPhi->addIncoming(r1, continueBB);
iPhi->addIncoming(i0, mainBB);
iPhi->addIncoming(i2, continueBB);
qPhi->addIncoming(zero, mainBB);
qPhi->addIncoming(q2, continueBB);
m_builder.SetInsertPoint(returnBB);
auto qRet = m_builder.CreatePHI(_type, 2, "q.ret");
qRet->addIncoming(zero, entryBB);
qRet->addIncoming(q1, loopBB);
auto rRet = m_builder.CreatePHI(_type, 2, "r.ret");
rRet->addIncoming(r0, entryBB);
rRet->addIncoming(r1, loopBB);
auto ret = m_builder.CreateInsertValue(llvm::UndefValue::get(retType), qRet, 0, "ret0");
ret = m_builder.CreateInsertValue(ret, rRet, 1, "ret");
m_builder.CreateRet(ret);
}
return func;
10 years ago
}
llvm::Function* Arith256::getExpFunc()
{
if (!m_exp)
{
llvm::Type* argTypes[] = {Type::Word, Type::Word};
m_exp = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, "arith.exp", getModule());
auto base = &m_exp->getArgumentList().front();
base->setName("base");
auto exponent = base->getNextNode();
exponent->setName("exponent");
InsertPointGuard guard{m_builder};
// while (e != 0) {
// if (e % 2 == 1)
// r *= b;
// b *= b;
// e /= 2;
// }
auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), "Entry", m_exp);
auto headerBB = llvm::BasicBlock::Create(m_builder.getContext(), "LoopHeader", m_exp);
auto bodyBB = llvm::BasicBlock::Create(m_builder.getContext(), "LoopBody", m_exp);
auto updateBB = llvm::BasicBlock::Create(m_builder.getContext(), "ResultUpdate", m_exp);
auto continueBB = llvm::BasicBlock::Create(m_builder.getContext(), "Continue", m_exp);
auto returnBB = llvm::BasicBlock::Create(m_builder.getContext(), "Return", m_exp);
m_builder.SetInsertPoint(entryBB);
auto a1 = m_builder.CreateAlloca(Type::Word, nullptr, "a1");
auto a2 = m_builder.CreateAlloca(Type::Word, nullptr, "a2");
auto a3 = m_builder.CreateAlloca(Type::Word, nullptr, "a3");
m_builder.CreateBr(headerBB);
m_builder.SetInsertPoint(headerBB);
auto r = m_builder.CreatePHI(Type::Word, 2, "r");
auto b = m_builder.CreatePHI(Type::Word, 2, "b");
auto e = m_builder.CreatePHI(Type::Word, 2, "e");
auto eNonZero = m_builder.CreateICmpNE(e, Constant::get(0), "e.nonzero");
m_builder.CreateCondBr(eNonZero, bodyBB, returnBB);
m_builder.SetInsertPoint(bodyBB);
auto eOdd = m_builder.CreateICmpNE(m_builder.CreateAnd(e, Constant::get(1)), Constant::get(0), "e.isodd");
m_builder.CreateCondBr(eOdd, updateBB, continueBB);
m_builder.SetInsertPoint(updateBB);
m_builder.CreateStore(r, a1);
m_builder.CreateStore(b, a2);
createCall(m_mul, {a1, a2, a3});
auto r0 = m_builder.CreateLoad(a3, "r0");
m_builder.CreateBr(continueBB);
m_builder.SetInsertPoint(continueBB);
auto r1 = m_builder.CreatePHI(Type::Word, 2, "r1");
r1->addIncoming(r, bodyBB);
r1->addIncoming(r0, updateBB);
m_builder.CreateStore(b, a1);
m_builder.CreateStore(b, a2);
createCall(m_mul, {a1, a2, a3});
auto b1 = m_builder.CreateLoad(a3, "b1");
auto e1 = m_builder.CreateLShr(e, Constant::get(1), "e1");
m_builder.CreateBr(headerBB);
r->addIncoming(Constant::get(1), entryBB);
r->addIncoming(r1, continueBB);
b->addIncoming(base, entryBB);
b->addIncoming(b1, continueBB);
e->addIncoming(exponent, entryBB);
e->addIncoming(e1, continueBB);
m_builder.SetInsertPoint(returnBB);
m_builder.CreateRet(r);
}
return m_exp;
}
llvm::Function* Arith256::getAddModFunc()
{
if (!m_addmod)
{
auto i512Ty = m_builder.getIntNTy(512);
llvm::Type* argTypes[] = {Type::Word, Type::Word, Type::Word};
m_addmod = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, "addmod", getModule());
auto x = &m_addmod->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
auto mod = y->getNextNode();
mod->setName("m");
InsertPointGuard guard{m_builder};
auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), {}, m_addmod);
m_builder.SetInsertPoint(entryBB);
auto x512 = m_builder.CreateZExt(x, i512Ty, "x512");
auto y512 = m_builder.CreateZExt(y, i512Ty, "y512");
auto m512 = m_builder.CreateZExt(mod, i512Ty, "m512");
auto s = m_builder.CreateAdd(x512, y512, "s");
auto d = createCall(getDivFunc(i512Ty), {s, m512});
auto r = m_builder.CreateExtractValue(d, 1, "r");
m_builder.CreateRet(m_builder.CreateTrunc(r, Type::Word));
}
return m_addmod;
}
llvm::Function* Arith256::getMulModFunc()
{
if (!m_mulmod)
{
llvm::Type* argTypes[] = {Type::Word, Type::Word, Type::Word};
m_mulmod = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, "mulmod", getModule());
auto i512Ty = m_builder.getIntNTy(512);
llvm::Type* mul512ArgTypes[] = {Type::WordPtr, Type::WordPtr, i512Ty->getPointerTo()};
auto mul512 = llvm::Function::Create(llvm::FunctionType::get(Type::Void, mul512ArgTypes, false), llvm::Function::ExternalLinkage, "arith_mul512", getModule());
auto x = &m_mulmod->getArgumentList().front();
x->setName("x");
auto y = x->getNextNode();
y->setName("y");
auto mod = y->getNextNode();
mod->setName("mod");
InsertPointGuard guard{m_builder};
auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), {}, m_mulmod);
m_builder.SetInsertPoint(entryBB);
auto a1 = m_builder.CreateAlloca(Type::Word);
auto a2 = m_builder.CreateAlloca(Type::Word);
auto a3 = m_builder.CreateAlloca(i512Ty);
m_builder.CreateStore(x, a1);
m_builder.CreateStore(y, a2);
createCall(mul512, {a1, a2, a3});
auto p = m_builder.CreateLoad(a3, "p");
auto m = m_builder.CreateZExt(mod, i512Ty, "m");
auto d = createCall(getDivFunc(i512Ty), {p, m});
auto r = m_builder.CreateExtractValue(d, 1, "r");
m_builder.CreateRet(m_builder.CreateTrunc(r, Type::Word));
}
return m_mulmod;
}
llvm::Value* Arith256::binaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2)
{
m_builder.CreateStore(_arg1, m_arg1);
m_builder.CreateStore(_arg2, m_arg2);
m_builder.CreateCall3(_op, m_arg1, m_arg2, m_result);
return m_builder.CreateLoad(m_result);
}
llvm::Value* Arith256::mul(llvm::Value* _arg1, llvm::Value* _arg2)
{
return binaryOp(m_mul, _arg1, _arg2);
}
std::pair<llvm::Value*, llvm::Value*> Arith256::div(llvm::Value* _arg1, llvm::Value* _arg2)
{
auto div = m_builder.CreateExtractValue(createCall(getDivFunc(Type::Word), {_arg1, _arg2}), 0, "div");
auto mod = m_builder.CreateExtractValue(createCall(getDivFunc(Type::Word), {_arg1, _arg2}), 1, "mod");
return std::make_pair(div, mod);
}
std::pair<llvm::Value*, llvm::Value*> Arith256::sdiv(llvm::Value* _x, llvm::Value* _y)
{
auto xIsNeg = m_builder.CreateICmpSLT(_x, Constant::get(0));
auto xNeg = m_builder.CreateSub(Constant::get(0), _x);
auto xAbs = m_builder.CreateSelect(xIsNeg, xNeg, _x);
auto yIsNeg = m_builder.CreateICmpSLT(_y, Constant::get(0));
auto yNeg = m_builder.CreateSub(Constant::get(0), _y);
auto yAbs = m_builder.CreateSelect(yIsNeg, yNeg, _y);
auto res = div(xAbs, yAbs);
// the reminder has the same sign as dividend
auto rNeg = m_builder.CreateSub(Constant::get(0), res.second);
res.second = m_builder.CreateSelect(xIsNeg, rNeg, res.second);
auto qNeg = m_builder.CreateSub(Constant::get(0), res.first);
auto xyOpposite = m_builder.CreateXor(xIsNeg, yIsNeg);
res.first = m_builder.CreateSelect(xyOpposite, qNeg, res.first);
return res;
}
llvm::Value* Arith256::exp(llvm::Value* _arg1, llvm::Value* _arg2)
{
10 years ago
return createCall(getExpFunc(), {_arg1, _arg2});
}
llvm::Value* Arith256::addmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
{
return createCall(getAddModFunc(), {_arg1, _arg2, _arg3});
}
llvm::Value* Arith256::mulmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3)
{
return createCall(getMulModFunc(), {_arg1, _arg2, _arg3});
}
namespace
{
#ifdef __SIZEOF_INT128__
using uint128 = __uint128_t;
#else
struct uint128
{
uint64_t lo = 0;
uint64_t hi = 0;
uint128(uint64_t lo) : lo(lo) {}
uint128 operator+(uint128 a)
{
uint128 r = 0;
bool overflow = lo > std::numeric_limits<uint64_t>::max() - a.lo;
r.lo = lo + a.lo;
r.hi = hi + a.hi + overflow;
return r;
}
uint128 operator>>(int s)
{
assert(s == 64);
return hi;
}
uint128 operator<<(int s)
{
assert(s == 64);
uint128 r = 0;
r.hi = lo;
return r;
}
explicit operator uint64_t() { return lo; }
static uint128 mul(uint64_t a, uint64_t b)
{
auto x_lo = 0xFFFFFFFF & a;
auto y_lo = 0xFFFFFFFF & b;
auto x_hi = a >> 32;
auto y_hi = b >> 32;
auto t1 = x_lo * y_lo;
auto t2 = x_lo * y_hi;
auto t3 = x_hi * y_lo;
auto t4 = x_hi * y_hi;
auto lo = (uint32_t)t1;
auto mid = (uint64_t)(t1 >> 32) + (uint32_t)t2 + (uint32_t)t3;
auto hi = (uint64_t)(t2 >> 32) + (t3 >> 32) + t4 + (mid >> 32);
uint128 r = 0;
r.lo = (uint64_t)lo + (mid << 32);
r.hi = hi;
return r;
}
uint128 operator*(uint128 a)
{
auto t1 = mul(lo, a.lo);
auto t2 = mul(lo, a.hi);
auto t3 = mul(hi, a.lo);
return t1 + (t2 << 64) + (t3 << 64);
}
};
#endif
struct uint256
{
uint64_t lo = 0;
uint64_t mid = 0;
uint128 hi = 0;
uint256(uint64_t lo, uint64_t mid, uint128 hi): lo(lo), mid(mid), hi(hi) {}
uint256(uint128 n)
{
*((uint128*)&lo) = n;
}
explicit operator uint128()
{
return *((uint128*)&lo);
}
uint256 operator+(uint256 a)
{
auto _lo = (uint128) lo + a.lo;
auto _mid = (uint128) mid + a.mid + (_lo >> 64);
auto _hi = hi + a.hi + (_mid >> 64);
return {(uint64_t)_lo, (uint64_t)_mid, _hi};
}
uint256 lo2hi()
{
hi = (uint128)*this;
lo = 0;
mid = 0;
return *this;
}
};
struct uint512
{
uint128 lo;
uint128 mid;
uint256 hi;
};
uint256 mul(uint256 x, uint256 y)
{
auto t1 = (uint128) x.lo * y.lo;
auto t2 = (uint128) x.lo * y.mid;
auto t3 = (uint128) x.lo * y.hi;
auto t4 = (uint128) x.mid * y.lo;
auto t5 = (uint128) x.mid * y.mid;
auto t6 = (uint128) x.mid * y.hi;
auto t7 = x.hi * y.lo;
auto t8 = x.hi * y.mid;
auto lo = (uint64_t) t1;
auto m1 = (t1 >> 64) + (uint64_t) t2;
auto m2 = (uint64_t) m1;
auto mid = (uint128) m2 + (uint64_t) t4;
auto hi = (t2 >> 64) + t3 + (t4 >> 64) + t5 + (t6 << 64) + t7
+ (t8 << 64) + (m1 >> 64) + (mid >> 64);
return {lo, (uint64_t)mid, hi};
}
uint512 mul512(uint256 x, uint256 y)
{
auto x_lo = (uint128) x;
auto y_lo = (uint128) y;
auto t1 = mul(x_lo, y_lo);
auto t2 = mul(x_lo, y.hi);
auto t3 = mul(x.hi, y_lo);
auto t4 = mul(x.hi, y.hi);
auto lo = (uint128) t1;
auto mid = (uint256) t1.hi + (uint128) t2 + (uint128) t3;
auto hi = (uint256)t2.hi + t3.hi + t4 + mid.hi;
return {lo, (uint128)mid, hi};
}
}
}
}
}
extern "C"
{
using namespace dev::eth::jit;
10 years ago
EXPORT void debug(uint64_t a, uint64_t b, uint64_t c, uint64_t d, char z)
{
std::cerr << "DEBUG " << z << ": " << d << c << b << a << std::endl;
}
EXPORT void arith_mul(uint256* _arg1, uint256* _arg2, uint256* o_result)
{
*o_result = mul(*_arg1, *_arg2);
}
EXPORT void arith_mul512(uint256* _arg1, uint256* _arg2, uint512* o_result)
{
*o_result = mul512(*_arg1, *_arg2);
}
}