|
|
|
/*
|
|
|
|
This file is part of cpp-ethereum.
|
|
|
|
|
|
|
|
cpp-ethereum is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
cpp-ethereum is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
/** @file Dagger.cpp
|
|
|
|
* @author Gav Wood <i@gavwood.com>
|
|
|
|
* @date 2014
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <boost/detail/endian.hpp>
|
|
|
|
#include <chrono>
|
|
|
|
#include <array>
|
|
|
|
#include <random>
|
|
|
|
#include <libethcore/CryptoHeaders.h>
|
|
|
|
#include <libethcore/Common.h>
|
|
|
|
#include "Dagger.h"
|
|
|
|
using namespace std;
|
|
|
|
using namespace std::chrono;
|
|
|
|
|
|
|
|
namespace eth
|
|
|
|
{
|
|
|
|
|
|
|
|
#if FAKE_DAGGER
|
|
|
|
|
|
|
|
MineInfo Dagger::mine(h256& o_solution, h256 const& _root, u256 const& _difficulty, uint _msTimeout, bool const& _continue)
|
|
|
|
{
|
|
|
|
MineInfo ret{0, 0, false};
|
|
|
|
static std::mt19937_64 s_eng((time(0)));
|
|
|
|
u256 s = std::uniform_int_distribution<uint>(0, ~(uint)0)(s_eng);
|
|
|
|
|
|
|
|
bigint d = (bigint(1) << 256) / _difficulty;
|
|
|
|
ret.requirement = toLog2((u256)d);
|
|
|
|
|
|
|
|
// 2^ 0 32 64 128 256
|
|
|
|
// [--------*-------------------------]
|
|
|
|
//
|
|
|
|
// evaluate until we run out of time
|
|
|
|
for (auto startTime = steady_clock::now(); (steady_clock::now() - startTime) < milliseconds(_msTimeout) && _continue; s++)
|
|
|
|
{
|
|
|
|
o_solution = (h256)s;
|
|
|
|
auto e = (bigint)(u256)eval(_root, o_solution);
|
|
|
|
ret.best = max(ret.best, toLog2((u256)e));
|
|
|
|
if (e <= d)
|
|
|
|
{
|
|
|
|
ret.completed = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ret.completed)
|
|
|
|
assert(verify(_root, o_solution, _difficulty));
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
Dagger::Dagger()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
Dagger::~Dagger()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
u256 Dagger::bound(u256 const& _difficulty)
|
|
|
|
{
|
|
|
|
return (u256)((bigint(1) << 256) / _difficulty);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Dagger::verify(h256 const& _root, u256 const& _nonce, u256 const& _difficulty)
|
|
|
|
{
|
|
|
|
return eval(_root, _nonce) < bound(_difficulty);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Dagger::mine(u256& o_solution, h256 const& _root, u256 const& _difficulty, uint _msTimeout, bool const& _continue)
|
|
|
|
{
|
|
|
|
// restart search if root has changed
|
|
|
|
if (m_root != _root)
|
|
|
|
{
|
|
|
|
m_root = _root;
|
|
|
|
m_nonce = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// compute bound
|
|
|
|
u256 const b = bound(_difficulty);
|
|
|
|
|
|
|
|
// evaluate until we run out of time
|
|
|
|
for (auto startTime = steady_clock::now(); (steady_clock::now() - startTime) < milliseconds(_msTimeout) && _continue; m_nonce += 1)
|
|
|
|
{
|
|
|
|
if (eval(_root, m_nonce) < b)
|
|
|
|
{
|
|
|
|
o_solution = m_nonce;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _T>
|
|
|
|
inline void update(_T& _sha, u256 const& _value)
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
for (u256 v = _value; v; ++i, v >>= 8) {}
|
|
|
|
byte buf[32];
|
|
|
|
bytesRef bufRef(buf, i);
|
|
|
|
toBigEndian(_value, bufRef);
|
|
|
|
_sha.Update(buf, i);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _T>
|
|
|
|
inline void update(_T& _sha, h256 const& _value)
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
byte const* data = _value.data();
|
|
|
|
for (; i != 32 && data[i] == 0; ++i);
|
|
|
|
_sha.Update(data + i, 32 - i);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _T>
|
|
|
|
inline h256 get(_T& _sha)
|
|
|
|
{
|
|
|
|
h256 ret;
|
|
|
|
_sha.TruncatedFinal(&ret[0], 32);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
h256 Dagger::node(h256 const& _root, h256 const& _xn, uint_fast32_t _L, uint_fast32_t _i)
|
|
|
|
{
|
|
|
|
if (_L == _i)
|
|
|
|
return _root;
|
|
|
|
u256 m = (_L == 9) ? 16 : 3;
|
|
|
|
CryptoPP::SHA3_256 bsha;
|
|
|
|
for (uint_fast32_t k = 0; k < m; ++k)
|
|
|
|
{
|
|
|
|
CryptoPP::SHA3_256 sha;
|
|
|
|
update(sha, _root);
|
|
|
|
update(sha, _xn);
|
|
|
|
update(sha, (u256)_L);
|
|
|
|
update(sha, (u256)_i);
|
|
|
|
update(sha, (u256)k);
|
|
|
|
uint_fast32_t pk = (uint_fast32_t)(u256)get(sha) & ((1 << ((_L - 1) * 3)) - 1);
|
|
|
|
auto u = node(_root, _xn, _L - 1, pk);
|
|
|
|
update(bsha, u);
|
|
|
|
}
|
|
|
|
return get(bsha);
|
|
|
|
}
|
|
|
|
|
|
|
|
h256 Dagger::eval(h256 const& _root, u256 const& _nonce)
|
|
|
|
{
|
|
|
|
h256 extranonce = _nonce >> 26; // with xn = floor(n / 2^26) -> assuming this is with xn = floor(N / 2^26)
|
|
|
|
CryptoPP::SHA3_256 bsha;
|
|
|
|
for (uint_fast32_t k = 0; k < 4; ++k)
|
|
|
|
{
|
|
|
|
//sha256(D || xn || i || k) -> sha256(D || xn || k) - there's no 'i' here!
|
|
|
|
CryptoPP::SHA3_256 sha;
|
|
|
|
update(sha, _root);
|
|
|
|
update(sha, extranonce);
|
|
|
|
update(sha, _nonce);
|
|
|
|
update(sha, (u256)k);
|
|
|
|
uint_fast32_t pk = (uint_fast32_t)(u256)get(sha) & 0x1ffffff; // mod 8^8 * 2 [ == mod 2^25 ?! ] [ == & ((1 << 25) - 1) ] [ == & 0x1ffffff ]
|
|
|
|
auto u = node(_root, extranonce, 9, pk);
|
|
|
|
update(bsha, u);
|
|
|
|
}
|
|
|
|
return get(bsha);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
}
|