You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
264 lines
8.7 KiB
264 lines
8.7 KiB
10 years ago
|
/**********************************************************************
|
||
|
* Copyright (c) 2013, 2014 Pieter Wuille *
|
||
|
* Distributed under the MIT software license, see the accompanying *
|
||
|
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
|
||
|
**********************************************************************/
|
||
|
|
||
|
|
||
|
#ifndef _SECP256K1_ECDSA_IMPL_H_
|
||
|
#define _SECP256K1_ECDSA_IMPL_H_
|
||
|
|
||
|
#include "scalar.h"
|
||
|
#include "field.h"
|
||
|
#include "group.h"
|
||
|
#include "ecmult.h"
|
||
|
#include "ecmult_gen.h"
|
||
|
#include "ecdsa.h"
|
||
|
|
||
|
/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
|
||
|
* sage: for t in xrange(1023, -1, -1):
|
||
|
* .. p = 2**256 - 2**32 - t
|
||
|
* .. if p.is_prime():
|
||
|
* .. print '%x'%p
|
||
|
* .. break
|
||
|
* 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
|
||
|
* sage: a = 0
|
||
|
* sage: b = 7
|
||
|
* sage: F = FiniteField (p)
|
||
|
* sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
|
||
|
* 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
|
||
|
*/
|
||
|
static const secp256k1_fe_t secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
|
||
|
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
|
||
|
0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
|
||
|
);
|
||
|
|
||
|
/** Difference between field and order, values 'p' and 'n' values defined in
|
||
|
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
|
||
|
* sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
|
||
|
* sage: a = 0
|
||
|
* sage: b = 7
|
||
|
* sage: F = FiniteField (p)
|
||
|
* sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
|
||
|
* '14551231950b75fc4402da1722fc9baee'
|
||
|
*/
|
||
|
static const secp256k1_fe_t secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
|
||
|
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
|
||
|
);
|
||
|
|
||
|
static int secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size) {
|
||
|
unsigned char ra[32] = {0}, sa[32] = {0};
|
||
|
const unsigned char *rp;
|
||
|
const unsigned char *sp;
|
||
|
int lenr;
|
||
|
int lens;
|
||
|
int overflow;
|
||
|
if (sig[0] != 0x30) {
|
||
|
return 0;
|
||
|
}
|
||
|
lenr = sig[3];
|
||
|
if (5+lenr >= size) {
|
||
|
return 0;
|
||
|
}
|
||
|
lens = sig[lenr+5];
|
||
|
if (sig[1] != lenr+lens+4) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (lenr+lens+6 > size) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (sig[2] != 0x02) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (lenr == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (sig[lenr+4] != 0x02) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (lens == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
sp = sig + 6 + lenr;
|
||
|
while (lens > 0 && sp[0] == 0) {
|
||
|
lens--;
|
||
|
sp++;
|
||
|
}
|
||
|
if (lens > 32) {
|
||
|
return 0;
|
||
|
}
|
||
|
rp = sig + 4;
|
||
|
while (lenr > 0 && rp[0] == 0) {
|
||
|
lenr--;
|
||
|
rp++;
|
||
|
}
|
||
|
if (lenr > 32) {
|
||
|
return 0;
|
||
|
}
|
||
|
memcpy(ra + 32 - lenr, rp, lenr);
|
||
|
memcpy(sa + 32 - lens, sp, lens);
|
||
|
overflow = 0;
|
||
|
secp256k1_scalar_set_b32(&r->r, ra, &overflow);
|
||
|
if (overflow) {
|
||
|
return 0;
|
||
|
}
|
||
|
secp256k1_scalar_set_b32(&r->s, sa, &overflow);
|
||
|
if (overflow) {
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a) {
|
||
|
unsigned char r[33] = {0}, s[33] = {0};
|
||
|
unsigned char *rp = r, *sp = s;
|
||
|
int lenR = 33, lenS = 33;
|
||
|
secp256k1_scalar_get_b32(&r[1], &a->r);
|
||
|
secp256k1_scalar_get_b32(&s[1], &a->s);
|
||
|
while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
|
||
|
while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
|
||
|
if (*size < 6+lenS+lenR) {
|
||
|
return 0;
|
||
|
}
|
||
|
*size = 6 + lenS + lenR;
|
||
|
sig[0] = 0x30;
|
||
|
sig[1] = 4 + lenS + lenR;
|
||
|
sig[2] = 0x02;
|
||
|
sig[3] = lenR;
|
||
|
memcpy(sig+4, rp, lenR);
|
||
|
sig[4+lenR] = 0x02;
|
||
|
sig[5+lenR] = lenS;
|
||
|
memcpy(sig+lenR+6, sp, lenS);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context_t *ctx, const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) {
|
||
|
unsigned char c[32];
|
||
|
secp256k1_scalar_t sn, u1, u2;
|
||
|
secp256k1_fe_t xr;
|
||
|
secp256k1_gej_t pubkeyj;
|
||
|
secp256k1_gej_t pr;
|
||
|
|
||
|
if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
secp256k1_scalar_inverse_var(&sn, &sig->s);
|
||
|
secp256k1_scalar_mul(&u1, &sn, message);
|
||
|
secp256k1_scalar_mul(&u2, &sn, &sig->r);
|
||
|
secp256k1_gej_set_ge(&pubkeyj, pubkey);
|
||
|
secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
|
||
|
if (secp256k1_gej_is_infinity(&pr)) {
|
||
|
return 0;
|
||
|
}
|
||
|
secp256k1_scalar_get_b32(c, &sig->r);
|
||
|
secp256k1_fe_set_b32(&xr, c);
|
||
|
|
||
|
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
|
||
|
* in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
|
||
|
* compute the remainder modulo n, and compare it to xr. However:
|
||
|
*
|
||
|
* xr == X(pr) mod n
|
||
|
* <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
|
||
|
* [Since 2 * n > p, h can only be 0 or 1]
|
||
|
* <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
|
||
|
* [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
|
||
|
* <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
|
||
|
* [Multiplying both sides of the equations by pr.z^2 mod p]
|
||
|
* <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
|
||
|
*
|
||
|
* Thus, we can avoid the inversion, but we have to check both cases separately.
|
||
|
* secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
|
||
|
*/
|
||
|
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
|
||
|
/* xr.x == xr * xr.z^2 mod p, so the signature is valid. */
|
||
|
return 1;
|
||
|
}
|
||
|
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
|
||
|
/* xr + p >= n, so we can skip testing the second case. */
|
||
|
return 0;
|
||
|
}
|
||
|
secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
|
||
|
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
|
||
|
/* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context_t *ctx, const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid) {
|
||
|
unsigned char brx[32];
|
||
|
secp256k1_fe_t fx;
|
||
|
secp256k1_ge_t x;
|
||
|
secp256k1_gej_t xj;
|
||
|
secp256k1_scalar_t rn, u1, u2;
|
||
|
secp256k1_gej_t qj;
|
||
|
|
||
|
if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
secp256k1_scalar_get_b32(brx, &sig->r);
|
||
|
VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */
|
||
|
if (recid & 2) {
|
||
|
if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe);
|
||
|
}
|
||
|
if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) {
|
||
|
return 0;
|
||
|
}
|
||
|
secp256k1_gej_set_ge(&xj, &x);
|
||
|
secp256k1_scalar_inverse_var(&rn, &sig->r);
|
||
|
secp256k1_scalar_mul(&u1, &rn, message);
|
||
|
secp256k1_scalar_negate(&u1, &u1);
|
||
|
secp256k1_scalar_mul(&u2, &rn, &sig->s);
|
||
|
secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1);
|
||
|
secp256k1_ge_set_gej_var(pubkey, &qj);
|
||
|
return !secp256k1_gej_is_infinity(&qj);
|
||
|
}
|
||
|
|
||
|
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context_t *ctx, secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid) {
|
||
|
unsigned char b[32];
|
||
|
secp256k1_gej_t rp;
|
||
|
secp256k1_ge_t r;
|
||
|
secp256k1_scalar_t n;
|
||
|
int overflow = 0;
|
||
|
|
||
|
secp256k1_ecmult_gen(ctx, &rp, nonce);
|
||
|
secp256k1_ge_set_gej(&r, &rp);
|
||
|
secp256k1_fe_normalize(&r.x);
|
||
|
secp256k1_fe_normalize(&r.y);
|
||
|
secp256k1_fe_get_b32(b, &r.x);
|
||
|
secp256k1_scalar_set_b32(&sig->r, b, &overflow);
|
||
|
if (secp256k1_scalar_is_zero(&sig->r)) {
|
||
|
/* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */
|
||
|
secp256k1_gej_clear(&rp);
|
||
|
secp256k1_ge_clear(&r);
|
||
|
return 0;
|
||
|
}
|
||
|
if (recid) {
|
||
|
*recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
|
||
|
}
|
||
|
secp256k1_scalar_mul(&n, &sig->r, seckey);
|
||
|
secp256k1_scalar_add(&n, &n, message);
|
||
|
secp256k1_scalar_inverse(&sig->s, nonce);
|
||
|
secp256k1_scalar_mul(&sig->s, &sig->s, &n);
|
||
|
secp256k1_scalar_clear(&n);
|
||
|
secp256k1_gej_clear(&rp);
|
||
|
secp256k1_ge_clear(&r);
|
||
|
if (secp256k1_scalar_is_zero(&sig->s)) {
|
||
|
return 0;
|
||
|
}
|
||
|
if (secp256k1_scalar_is_high(&sig->s)) {
|
||
|
secp256k1_scalar_negate(&sig->s, &sig->s);
|
||
|
if (recid) {
|
||
|
*recid ^= 1;
|
||
|
}
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
#endif
|