|
|
@ -8,11 +8,11 @@ |
|
|
|
|
|
|
|
ethash is distributed in the hope that it will be useful, |
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
|
GNU General Public License for more details. |
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License |
|
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/ |
|
|
|
/** @file internal.c
|
|
|
|
* @author Tim Hughes <tim@twistedfury.com> |
|
|
@ -23,11 +23,15 @@ |
|
|
|
#include <assert.h> |
|
|
|
#include <inttypes.h> |
|
|
|
#include <stddef.h> |
|
|
|
#include <errno.h> |
|
|
|
#include <math.h> |
|
|
|
#include "mmap.h" |
|
|
|
#include "ethash.h" |
|
|
|
#include "fnv.h" |
|
|
|
#include "endian.h" |
|
|
|
#include "internal.h" |
|
|
|
#include "data_sizes.h" |
|
|
|
#include "io.h" |
|
|
|
|
|
|
|
#ifdef WITH_CRYPTOPP |
|
|
|
|
|
|
@ -37,264 +41,456 @@ |
|
|
|
#include "sha3.h" |
|
|
|
#endif // WITH_CRYPTOPP
|
|
|
|
|
|
|
|
uint64_t ethash_get_datasize(const uint32_t block_number) { |
|
|
|
assert(block_number / ETHASH_EPOCH_LENGTH < 2048); |
|
|
|
return dag_sizes[block_number / ETHASH_EPOCH_LENGTH]; |
|
|
|
uint64_t ethash_get_datasize(uint64_t const block_number) |
|
|
|
{ |
|
|
|
assert(block_number / ETHASH_EPOCH_LENGTH < 2048); |
|
|
|
return dag_sizes[block_number / ETHASH_EPOCH_LENGTH]; |
|
|
|
} |
|
|
|
|
|
|
|
uint64_t ethash_get_cachesize(const uint32_t block_number) { |
|
|
|
assert(block_number / ETHASH_EPOCH_LENGTH < 2048); |
|
|
|
return cache_sizes[block_number / ETHASH_EPOCH_LENGTH]; |
|
|
|
uint64_t ethash_get_cachesize(uint64_t const block_number) |
|
|
|
{ |
|
|
|
assert(block_number / ETHASH_EPOCH_LENGTH < 2048); |
|
|
|
return cache_sizes[block_number / ETHASH_EPOCH_LENGTH]; |
|
|
|
} |
|
|
|
|
|
|
|
// Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014)
|
|
|
|
// https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf
|
|
|
|
// SeqMemoHash(s, R, N)
|
|
|
|
void static ethash_compute_cache_nodes( |
|
|
|
node *const nodes, |
|
|
|
ethash_params const *params, |
|
|
|
const uint8_t seed[32]) { |
|
|
|
assert((params->cache_size % sizeof(node)) == 0); |
|
|
|
uint32_t const num_nodes = (uint32_t) (params->cache_size / sizeof(node)); |
|
|
|
|
|
|
|
SHA3_512(nodes[0].bytes, seed, 32); |
|
|
|
|
|
|
|
for (unsigned i = 1; i != num_nodes; ++i) { |
|
|
|
SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64); |
|
|
|
} |
|
|
|
|
|
|
|
for (unsigned j = 0; j != ETHASH_CACHE_ROUNDS; j++) { |
|
|
|
for (unsigned i = 0; i != num_nodes; i++) { |
|
|
|
uint32_t const idx = nodes[i].words[0] % num_nodes; |
|
|
|
node data; |
|
|
|
data = nodes[(num_nodes - 1 + i) % num_nodes]; |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
data.words[w] ^= nodes[idx].words[w]; |
|
|
|
} |
|
|
|
SHA3_512(nodes[i].bytes, data.bytes, sizeof(data)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// now perform endian conversion
|
|
|
|
#if BYTE_ORDER != LITTLE_ENDIAN |
|
|
|
for (unsigned w = 0; w != (num_nodes*NODE_WORDS); ++w) |
|
|
|
{ |
|
|
|
nodes->words[w] = fix_endian32(nodes->words[w]); |
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_mkcache( |
|
|
|
void *cache, |
|
|
|
ethash_params const *params, |
|
|
|
const uint8_t seed[32]) { |
|
|
|
node *nodes = (node *) cache; |
|
|
|
ethash_compute_cache_nodes(nodes, params, seed); |
|
|
|
bool static ethash_compute_cache_nodes( |
|
|
|
node* const nodes, |
|
|
|
uint64_t cache_size, |
|
|
|
ethash_h256_t const* seed |
|
|
|
) |
|
|
|
{ |
|
|
|
if (cache_size % sizeof(node) != 0) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
uint32_t const num_nodes = (uint32_t) (cache_size / sizeof(node)); |
|
|
|
|
|
|
|
SHA3_512(nodes[0].bytes, (uint8_t*)seed, 32); |
|
|
|
|
|
|
|
for (uint32_t i = 1; i != num_nodes; ++i) { |
|
|
|
SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64); |
|
|
|
} |
|
|
|
|
|
|
|
for (uint32_t j = 0; j != ETHASH_CACHE_ROUNDS; j++) { |
|
|
|
for (uint32_t i = 0; i != num_nodes; i++) { |
|
|
|
uint32_t const idx = nodes[i].words[0] % num_nodes; |
|
|
|
node data; |
|
|
|
data = nodes[(num_nodes - 1 + i) % num_nodes]; |
|
|
|
for (uint32_t w = 0; w != NODE_WORDS; ++w) { |
|
|
|
data.words[w] ^= nodes[idx].words[w]; |
|
|
|
} |
|
|
|
SHA3_512(nodes[i].bytes, data.bytes, sizeof(data)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// now perform endian conversion
|
|
|
|
fix_endian_arr32(nodes->words, num_nodes * NODE_WORDS); |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_calculate_dag_item( |
|
|
|
node *const ret, |
|
|
|
const unsigned node_index, |
|
|
|
const struct ethash_params *params, |
|
|
|
const void *cache) { |
|
|
|
|
|
|
|
uint32_t num_parent_nodes = (uint32_t) (params->cache_size / sizeof(node)); |
|
|
|
node const *cache_nodes = (node const *) cache; |
|
|
|
node const *init = &cache_nodes[node_index % num_parent_nodes]; |
|
|
|
|
|
|
|
memcpy(ret, init, sizeof(node)); |
|
|
|
ret->words[0] ^= node_index; |
|
|
|
SHA3_512(ret->bytes, ret->bytes, sizeof(node)); |
|
|
|
|
|
|
|
node* const ret, |
|
|
|
uint32_t node_index, |
|
|
|
ethash_light_t const light |
|
|
|
) |
|
|
|
{ |
|
|
|
uint32_t num_parent_nodes = (uint32_t) (light->cache_size / sizeof(node)); |
|
|
|
node const* cache_nodes = (node const *) light->cache; |
|
|
|
node const* init = &cache_nodes[node_index % num_parent_nodes]; |
|
|
|
memcpy(ret, init, sizeof(node)); |
|
|
|
ret->words[0] ^= node_index; |
|
|
|
SHA3_512(ret->bytes, ret->bytes, sizeof(node)); |
|
|
|
#if defined(_M_X64) && ENABLE_SSE |
|
|
|
__m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME); |
|
|
|
__m128i xmm0 = ret->xmm[0]; |
|
|
|
__m128i xmm1 = ret->xmm[1]; |
|
|
|
__m128i xmm2 = ret->xmm[2]; |
|
|
|
__m128i xmm3 = ret->xmm[3]; |
|
|
|
__m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME); |
|
|
|
__m128i xmm0 = ret->xmm[0]; |
|
|
|
__m128i xmm1 = ret->xmm[1]; |
|
|
|
__m128i xmm2 = ret->xmm[2]; |
|
|
|
__m128i xmm3 = ret->xmm[3]; |
|
|
|
#endif |
|
|
|
|
|
|
|
for (unsigned i = 0; i != ETHASH_DATASET_PARENTS; ++i) { |
|
|
|
uint32_t parent_index = ((node_index ^ i) * FNV_PRIME ^ ret->words[i % NODE_WORDS]) % num_parent_nodes; |
|
|
|
node const *parent = &cache_nodes[parent_index]; |
|
|
|
for (uint32_t i = 0; i != ETHASH_DATASET_PARENTS; ++i) { |
|
|
|
uint32_t parent_index = fnv_hash(node_index ^ i, ret->words[i % NODE_WORDS]) % num_parent_nodes; |
|
|
|
node const *parent = &cache_nodes[parent_index]; |
|
|
|
|
|
|
|
#if defined(_M_X64) && ENABLE_SSE |
|
|
|
{ |
|
|
|
xmm0 = _mm_mullo_epi32(xmm0, fnv_prime); |
|
|
|
xmm1 = _mm_mullo_epi32(xmm1, fnv_prime); |
|
|
|
xmm2 = _mm_mullo_epi32(xmm2, fnv_prime); |
|
|
|
xmm3 = _mm_mullo_epi32(xmm3, fnv_prime); |
|
|
|
xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]); |
|
|
|
xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]); |
|
|
|
xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]); |
|
|
|
xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]); |
|
|
|
|
|
|
|
// have to write to ret as values are used to compute index
|
|
|
|
ret->xmm[0] = xmm0; |
|
|
|
ret->xmm[1] = xmm1; |
|
|
|
ret->xmm[2] = xmm2; |
|
|
|
ret->xmm[3] = xmm3; |
|
|
|
} |
|
|
|
#else |
|
|
|
{ |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
ret->words[w] = fnv_hash(ret->words[w], parent->words[w]); |
|
|
|
} |
|
|
|
} |
|
|
|
{ |
|
|
|
xmm0 = _mm_mullo_epi32(xmm0, fnv_prime); |
|
|
|
xmm1 = _mm_mullo_epi32(xmm1, fnv_prime); |
|
|
|
xmm2 = _mm_mullo_epi32(xmm2, fnv_prime); |
|
|
|
xmm3 = _mm_mullo_epi32(xmm3, fnv_prime); |
|
|
|
xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]); |
|
|
|
xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]); |
|
|
|
xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]); |
|
|
|
xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]); |
|
|
|
|
|
|
|
// have to write to ret as values are used to compute index
|
|
|
|
ret->xmm[0] = xmm0; |
|
|
|
ret->xmm[1] = xmm1; |
|
|
|
ret->xmm[2] = xmm2; |
|
|
|
ret->xmm[3] = xmm3; |
|
|
|
} |
|
|
|
#else |
|
|
|
{ |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
ret->words[w] = fnv_hash(ret->words[w], parent->words[w]); |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
SHA3_512(ret->bytes, ret->bytes, sizeof(node)); |
|
|
|
} |
|
|
|
SHA3_512(ret->bytes, ret->bytes, sizeof(node)); |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_compute_full_data( |
|
|
|
void *mem, |
|
|
|
ethash_params const *params, |
|
|
|
void const *cache) { |
|
|
|
assert((params->full_size % (sizeof(uint32_t) * MIX_WORDS)) == 0); |
|
|
|
assert((params->full_size % sizeof(node)) == 0); |
|
|
|
node *full_nodes = mem; |
|
|
|
|
|
|
|
// now compute full nodes
|
|
|
|
for (unsigned n = 0; n != (params->full_size / sizeof(node)); ++n) { |
|
|
|
ethash_calculate_dag_item(&(full_nodes[n]), n, params, cache); |
|
|
|
} |
|
|
|
bool ethash_compute_full_data( |
|
|
|
void* mem, |
|
|
|
uint64_t full_size, |
|
|
|
ethash_light_t const light, |
|
|
|
ethash_callback_t callback |
|
|
|
) |
|
|
|
{ |
|
|
|
if (full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 || |
|
|
|
(full_size % sizeof(node)) != 0) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
uint32_t const max_n = (uint32_t)(full_size / sizeof(node)); |
|
|
|
node* full_nodes = mem; |
|
|
|
double const progress_change = 1.0f / max_n; |
|
|
|
double progress = 0.0f; |
|
|
|
// now compute full nodes
|
|
|
|
for (uint32_t n = 0; n != max_n; ++n) { |
|
|
|
if (callback && |
|
|
|
n % (max_n / 100) == 0 && |
|
|
|
callback((unsigned int)(ceil(progress * 100.0f))) != 0) { |
|
|
|
|
|
|
|
return false; |
|
|
|
} |
|
|
|
progress += progress_change; |
|
|
|
ethash_calculate_dag_item(&(full_nodes[n]), n, light); |
|
|
|
} |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
static void ethash_hash( |
|
|
|
ethash_return_value *ret, |
|
|
|
node const *full_nodes, |
|
|
|
void const *cache, |
|
|
|
ethash_params const *params, |
|
|
|
const uint8_t header_hash[32], |
|
|
|
const uint64_t nonce) { |
|
|
|
|
|
|
|
assert((params->full_size % MIX_WORDS) == 0); |
|
|
|
static bool ethash_hash( |
|
|
|
ethash_return_value_t* ret, |
|
|
|
node const* full_nodes, |
|
|
|
ethash_light_t const light, |
|
|
|
uint64_t full_size, |
|
|
|
ethash_h256_t const header_hash, |
|
|
|
uint64_t const nonce |
|
|
|
) |
|
|
|
{ |
|
|
|
if (full_size % MIX_WORDS != 0) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|
// pack hash and nonce together into first 40 bytes of s_mix
|
|
|
|
assert(sizeof(node) * 8 == 512); |
|
|
|
node s_mix[MIX_NODES + 1]; |
|
|
|
memcpy(s_mix[0].bytes, &header_hash, 32); |
|
|
|
fix_endian64(s_mix[0].double_words[4], nonce); |
|
|
|
|
|
|
|
// compute sha3-512 hash and replicate across mix
|
|
|
|
SHA3_512(s_mix->bytes, s_mix->bytes, 40); |
|
|
|
fix_endian_arr32(s_mix[0].words, 16); |
|
|
|
|
|
|
|
node* const mix = s_mix + 1; |
|
|
|
for (uint32_t w = 0; w != MIX_WORDS; ++w) { |
|
|
|
mix->words[w] = s_mix[0].words[w % NODE_WORDS]; |
|
|
|
} |
|
|
|
|
|
|
|
unsigned const page_size = sizeof(uint32_t) * MIX_WORDS; |
|
|
|
unsigned const num_full_pages = (unsigned) (full_size / page_size); |
|
|
|
|
|
|
|
for (unsigned i = 0; i != ETHASH_ACCESSES; ++i) { |
|
|
|
uint32_t const index = fnv_hash(s_mix->words[0] ^ i, mix->words[i % MIX_WORDS]) % num_full_pages; |
|
|
|
|
|
|
|
for (unsigned n = 0; n != MIX_NODES; ++n) { |
|
|
|
node const* dag_node; |
|
|
|
if (full_nodes) { |
|
|
|
dag_node = &full_nodes[MIX_NODES * index + n]; |
|
|
|
} else { |
|
|
|
node tmp_node; |
|
|
|
ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, light); |
|
|
|
dag_node = &tmp_node; |
|
|
|
} |
|
|
|
|
|
|
|
// pack hash and nonce together into first 40 bytes of s_mix
|
|
|
|
assert(sizeof(node) * 8 == 512); |
|
|
|
node s_mix[MIX_NODES + 1]; |
|
|
|
memcpy(s_mix[0].bytes, header_hash, 32); |
|
|
|
|
|
|
|
#if BYTE_ORDER != LITTLE_ENDIAN |
|
|
|
s_mix[0].double_words[4] = fix_endian64(nonce); |
|
|
|
#else |
|
|
|
s_mix[0].double_words[4] = nonce; |
|
|
|
#if defined(_M_X64) && ENABLE_SSE |
|
|
|
{ |
|
|
|
__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME); |
|
|
|
__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]); |
|
|
|
__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]); |
|
|
|
__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]); |
|
|
|
__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]); |
|
|
|
mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]); |
|
|
|
mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]); |
|
|
|
mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]); |
|
|
|
mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]); |
|
|
|
} |
|
|
|
#else |
|
|
|
{ |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]); |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
// compress mix
|
|
|
|
for (uint32_t w = 0; w != MIX_WORDS; w += 4) { |
|
|
|
uint32_t reduction = mix->words[w + 0]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 1]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 2]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 3]; |
|
|
|
mix->words[w / 4] = reduction; |
|
|
|
} |
|
|
|
|
|
|
|
fix_endian_arr32(mix->words, MIX_WORDS / 4); |
|
|
|
memcpy(&ret->mix_hash, mix->bytes, 32); |
|
|
|
// final Keccak hash
|
|
|
|
SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
|
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
// compute sha3-512 hash and replicate across mix
|
|
|
|
SHA3_512(s_mix->bytes, s_mix->bytes, 40); |
|
|
|
|
|
|
|
#if BYTE_ORDER != LITTLE_ENDIAN |
|
|
|
for (unsigned w = 0; w != 16; ++w) { |
|
|
|
s_mix[0].words[w] = fix_endian32(s_mix[0].words[w]); |
|
|
|
} |
|
|
|
#endif |
|
|
|
void ethash_quick_hash( |
|
|
|
ethash_h256_t* return_hash, |
|
|
|
ethash_h256_t const* header_hash, |
|
|
|
uint64_t const nonce, |
|
|
|
ethash_h256_t const* mix_hash |
|
|
|
) |
|
|
|
{ |
|
|
|
uint8_t buf[64 + 32]; |
|
|
|
memcpy(buf, header_hash, 32); |
|
|
|
fix_endian64_same(nonce); |
|
|
|
memcpy(&(buf[32]), &nonce, 8); |
|
|
|
SHA3_512(buf, buf, 40); |
|
|
|
memcpy(&(buf[64]), mix_hash, 32); |
|
|
|
SHA3_256(return_hash, buf, 64 + 32); |
|
|
|
} |
|
|
|
|
|
|
|
node *const mix = s_mix + 1; |
|
|
|
for (unsigned w = 0; w != MIX_WORDS; ++w) { |
|
|
|
mix->words[w] = s_mix[0].words[w % NODE_WORDS]; |
|
|
|
} |
|
|
|
ethash_h256_t ethash_get_seedhash(uint64_t block_number) |
|
|
|
{ |
|
|
|
ethash_h256_t ret; |
|
|
|
ethash_h256_reset(&ret); |
|
|
|
uint64_t const epochs = block_number / ETHASH_EPOCH_LENGTH; |
|
|
|
for (uint32_t i = 0; i < epochs; ++i) |
|
|
|
SHA3_256(&ret, (uint8_t*)&ret, 32); |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
unsigned const |
|
|
|
page_size = sizeof(uint32_t) * MIX_WORDS, |
|
|
|
num_full_pages = (unsigned) (params->full_size / page_size); |
|
|
|
bool ethash_quick_check_difficulty( |
|
|
|
ethash_h256_t const* header_hash, |
|
|
|
uint64_t const nonce, |
|
|
|
ethash_h256_t const* mix_hash, |
|
|
|
ethash_h256_t const* difficulty |
|
|
|
) |
|
|
|
{ |
|
|
|
|
|
|
|
ethash_h256_t return_hash; |
|
|
|
ethash_quick_hash(&return_hash, header_hash, nonce, mix_hash); |
|
|
|
return ethash_check_difficulty(&return_hash, difficulty); |
|
|
|
} |
|
|
|
|
|
|
|
ethash_light_t ethash_light_new_internal(uint64_t cache_size, ethash_h256_t const* seed) |
|
|
|
{ |
|
|
|
struct ethash_light *ret; |
|
|
|
ret = calloc(sizeof(*ret), 1); |
|
|
|
if (!ret) { |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
ret->cache = malloc((size_t)cache_size); |
|
|
|
if (!ret->cache) { |
|
|
|
goto fail_free_light; |
|
|
|
} |
|
|
|
node* nodes = (node*)ret->cache; |
|
|
|
if (!ethash_compute_cache_nodes(nodes, cache_size, seed)) { |
|
|
|
goto fail_free_cache_mem; |
|
|
|
} |
|
|
|
ret->cache_size = cache_size; |
|
|
|
return ret; |
|
|
|
|
|
|
|
fail_free_cache_mem: |
|
|
|
free(ret->cache); |
|
|
|
fail_free_light: |
|
|
|
free(ret); |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
for (unsigned i = 0; i != ETHASH_ACCESSES; ++i) { |
|
|
|
uint32_t const index = ((s_mix->words[0] ^ i) * FNV_PRIME ^ mix->words[i % MIX_WORDS]) % num_full_pages; |
|
|
|
ethash_light_t ethash_light_new(uint64_t block_number) |
|
|
|
{ |
|
|
|
ethash_h256_t seedhash = ethash_get_seedhash(block_number); |
|
|
|
ethash_light_t ret; |
|
|
|
ret = ethash_light_new_internal(ethash_get_cachesize(block_number), &seedhash); |
|
|
|
ret->block_number = block_number; |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
for (unsigned n = 0; n != MIX_NODES; ++n) { |
|
|
|
const node *dag_node = &full_nodes[MIX_NODES * index + n]; |
|
|
|
void ethash_light_delete(ethash_light_t light) |
|
|
|
{ |
|
|
|
if (light->cache) { |
|
|
|
free(light->cache); |
|
|
|
} |
|
|
|
free(light); |
|
|
|
} |
|
|
|
|
|
|
|
if (!full_nodes) { |
|
|
|
node tmp_node; |
|
|
|
ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, params, cache); |
|
|
|
dag_node = &tmp_node; |
|
|
|
} |
|
|
|
ethash_return_value_t ethash_light_compute_internal( |
|
|
|
ethash_light_t light, |
|
|
|
uint64_t full_size, |
|
|
|
ethash_h256_t const header_hash, |
|
|
|
uint64_t nonce |
|
|
|
) |
|
|
|
{ |
|
|
|
ethash_return_value_t ret; |
|
|
|
ret.success = true; |
|
|
|
if (!ethash_hash(&ret, NULL, light, full_size, header_hash, nonce)) { |
|
|
|
ret.success = false; |
|
|
|
} |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
#if defined(_M_X64) && ENABLE_SSE |
|
|
|
{ |
|
|
|
__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME); |
|
|
|
__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]); |
|
|
|
__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]); |
|
|
|
__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]); |
|
|
|
__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]); |
|
|
|
mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]); |
|
|
|
mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]); |
|
|
|
mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]); |
|
|
|
mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]); |
|
|
|
} |
|
|
|
#else |
|
|
|
{ |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]); |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
// compress mix
|
|
|
|
for (unsigned w = 0; w != MIX_WORDS; w += 4) { |
|
|
|
uint32_t reduction = mix->words[w + 0]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 1]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 2]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 3]; |
|
|
|
mix->words[w / 4] = reduction; |
|
|
|
} |
|
|
|
|
|
|
|
#if BYTE_ORDER != LITTLE_ENDIAN |
|
|
|
for (unsigned w = 0; w != MIX_WORDS/4; ++w) { |
|
|
|
mix->words[w] = fix_endian32(mix->words[w]); |
|
|
|
} |
|
|
|
#endif |
|
|
|
ethash_return_value_t ethash_light_compute( |
|
|
|
ethash_light_t light, |
|
|
|
ethash_h256_t const header_hash, |
|
|
|
uint64_t nonce |
|
|
|
) |
|
|
|
{ |
|
|
|
uint64_t full_size = ethash_get_datasize(light->block_number); |
|
|
|
return ethash_light_compute_internal(light, full_size, header_hash, nonce); |
|
|
|
} |
|
|
|
|
|
|
|
memcpy(ret->mix_hash, mix->bytes, 32); |
|
|
|
// final Keccak hash
|
|
|
|
SHA3_256(ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
|
|
|
|
static bool ethash_mmap(struct ethash_full* ret, FILE* f) |
|
|
|
{ |
|
|
|
int fd; |
|
|
|
char* mmapped_data; |
|
|
|
ret->file = f; |
|
|
|
if ((fd = ethash_fileno(ret->file)) == -1) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
mmapped_data= mmap( |
|
|
|
NULL, |
|
|
|
(size_t)ret->file_size + ETHASH_DAG_MAGIC_NUM_SIZE, |
|
|
|
PROT_READ | PROT_WRITE, |
|
|
|
MAP_SHARED, |
|
|
|
fd, |
|
|
|
0 |
|
|
|
); |
|
|
|
if (mmapped_data == MAP_FAILED) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
ret->data = (node*)(mmapped_data + ETHASH_DAG_MAGIC_NUM_SIZE); |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_quick_hash( |
|
|
|
uint8_t return_hash[32], |
|
|
|
const uint8_t header_hash[32], |
|
|
|
const uint64_t nonce, |
|
|
|
const uint8_t mix_hash[32]) { |
|
|
|
|
|
|
|
uint8_t buf[64 + 32]; |
|
|
|
memcpy(buf, header_hash, 32); |
|
|
|
#if BYTE_ORDER != LITTLE_ENDIAN |
|
|
|
nonce = fix_endian64(nonce); |
|
|
|
#endif |
|
|
|
memcpy(&(buf[32]), &nonce, 8); |
|
|
|
SHA3_512(buf, buf, 40); |
|
|
|
memcpy(&(buf[64]), mix_hash, 32); |
|
|
|
SHA3_256(return_hash, buf, 64 + 32); |
|
|
|
ethash_full_t ethash_full_new_internal( |
|
|
|
char const* dirname, |
|
|
|
ethash_h256_t const seed_hash, |
|
|
|
uint64_t full_size, |
|
|
|
ethash_light_t const light, |
|
|
|
ethash_callback_t callback |
|
|
|
) |
|
|
|
{ |
|
|
|
struct ethash_full* ret; |
|
|
|
FILE *f = NULL; |
|
|
|
ret = calloc(sizeof(*ret), 1); |
|
|
|
if (!ret) { |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
ret->file_size = (size_t)full_size; |
|
|
|
switch (ethash_io_prepare(dirname, seed_hash, &f, (size_t)full_size, false)) { |
|
|
|
case ETHASH_IO_FAIL: |
|
|
|
goto fail_free_full; |
|
|
|
case ETHASH_IO_MEMO_MATCH: |
|
|
|
if (!ethash_mmap(ret, f)) { |
|
|
|
goto fail_close_file; |
|
|
|
} |
|
|
|
return ret; |
|
|
|
case ETHASH_IO_MEMO_SIZE_MISMATCH: |
|
|
|
// if a DAG of same filename but unexpected size is found, silently force new file creation
|
|
|
|
if (ethash_io_prepare(dirname, seed_hash, &f, (size_t)full_size, true) != ETHASH_IO_MEMO_MISMATCH) { |
|
|
|
goto fail_free_full; |
|
|
|
} |
|
|
|
// fallthrough to the mismatch case here, DO NOT go through match
|
|
|
|
case ETHASH_IO_MEMO_MISMATCH: |
|
|
|
if (!ethash_mmap(ret, f)) { |
|
|
|
goto fail_close_file; |
|
|
|
} |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
if (!ethash_compute_full_data(ret->data, full_size, light, callback)) { |
|
|
|
goto fail_free_full_data; |
|
|
|
} |
|
|
|
|
|
|
|
// after the DAG has been filled then we finalize it by writting the magic number at the beginning
|
|
|
|
if (fseek(f, 0, SEEK_SET) != 0) { |
|
|
|
goto fail_free_full_data; |
|
|
|
} |
|
|
|
uint64_t const magic_num = ETHASH_DAG_MAGIC_NUM; |
|
|
|
if (fwrite(&magic_num, ETHASH_DAG_MAGIC_NUM_SIZE, 1, f) != 1) { |
|
|
|
goto fail_free_full_data; |
|
|
|
} |
|
|
|
fflush(f); // make sure the magic number IS there
|
|
|
|
return ret; |
|
|
|
|
|
|
|
fail_free_full_data: |
|
|
|
// could check that munmap(..) == 0 but even if it did not can't really do anything here
|
|
|
|
munmap(ret->data, (size_t)full_size); |
|
|
|
fail_close_file: |
|
|
|
fclose(ret->file); |
|
|
|
fail_free_full: |
|
|
|
free(ret); |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_get_seedhash(uint8_t seedhash[32], const uint32_t block_number) { |
|
|
|
memset(seedhash, 0, 32); |
|
|
|
const uint32_t epochs = block_number / ETHASH_EPOCH_LENGTH; |
|
|
|
for (uint32_t i = 0; i < epochs; ++i) |
|
|
|
SHA3_256(seedhash, seedhash, 32); |
|
|
|
ethash_full_t ethash_full_new(ethash_light_t light, ethash_callback_t callback) |
|
|
|
{ |
|
|
|
char strbuf[256]; |
|
|
|
if (!ethash_get_default_dirname(strbuf, 256)) { |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
uint64_t full_size = ethash_get_datasize(light->block_number); |
|
|
|
ethash_h256_t seedhash = ethash_get_seedhash(light->block_number); |
|
|
|
return ethash_full_new_internal(strbuf, seedhash, full_size, light, callback); |
|
|
|
} |
|
|
|
|
|
|
|
int ethash_preliminary_check_boundary( |
|
|
|
const uint8_t header_hash[32], |
|
|
|
const uint64_t nonce, |
|
|
|
const uint8_t mix_hash[32], |
|
|
|
const uint8_t difficulty[32]) { |
|
|
|
void ethash_full_delete(ethash_full_t full) |
|
|
|
{ |
|
|
|
// could check that munmap(..) == 0 but even if it did not can't really do anything here
|
|
|
|
munmap(full->data, (size_t)full->file_size); |
|
|
|
if (full->file) { |
|
|
|
fclose(full->file); |
|
|
|
} |
|
|
|
free(full); |
|
|
|
} |
|
|
|
|
|
|
|
uint8_t return_hash[32]; |
|
|
|
ethash_quick_hash(return_hash, header_hash, nonce, mix_hash); |
|
|
|
return ethash_leq_be256(return_hash, difficulty); |
|
|
|
ethash_return_value_t ethash_full_compute( |
|
|
|
ethash_full_t full, |
|
|
|
ethash_h256_t const header_hash, |
|
|
|
uint64_t nonce |
|
|
|
) |
|
|
|
{ |
|
|
|
ethash_return_value_t ret; |
|
|
|
ret.success = true; |
|
|
|
if (!ethash_hash( |
|
|
|
&ret, |
|
|
|
(node const*)full->data, |
|
|
|
NULL, |
|
|
|
full->file_size, |
|
|
|
header_hash, |
|
|
|
nonce)) { |
|
|
|
ret.success = false; |
|
|
|
} |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_full(ethash_return_value *ret, void const *full_mem, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) { |
|
|
|
ethash_hash(ret, (node const *) full_mem, NULL, params, previous_hash, nonce); |
|
|
|
void const* ethash_full_dag(ethash_full_t full) |
|
|
|
{ |
|
|
|
return full->data; |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_light(ethash_return_value *ret, void const *cache, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) { |
|
|
|
ethash_hash(ret, NULL, cache, params, previous_hash, nonce); |
|
|
|
uint64_t ethash_full_dag_size(ethash_full_t full) |
|
|
|
{ |
|
|
|
return full->file_size; |
|
|
|
} |
|
|
|