Browse Source

Changing bounds checks

cl-refactor
Matthew Wampler-Doty 10 years ago
parent
commit
2bb0cebe69
  1. 4
      data_sizes.h
  2. 67
      internal.c

4
data_sizes.h

@ -49,7 +49,7 @@ extern "C" {
// While[! PrimeQ[i], i--];
// Sow[i*MixBytes]; j++]]]][[2]][[1]]
static const size_t dag_sizes[] = {
static const size_t dag_sizes[2048] = {
1073739904U, 1082130304U, 1090514816U, 1098906752U, 1107293056U,
1115684224U, 1124070016U, 1132461952U, 1140849536U, 1149232768U,
1157627776U, 1166013824U, 1174404736U, 1182786944U, 1191180416U,
@ -478,7 +478,7 @@ static const size_t dag_sizes[] = {
// While[! PrimeQ[i], i--];
// Sow[i*HashBytes]; j++]]]][[2]][[1]]
const size_t cache_sizes[] = {
const size_t cache_sizes[2048] = {
1048384U, 1055552U, 1064512U, 1072832U, 1080896U, 1089344U, 1096768U,
1104448U, 1113664U, 1121216U, 1130176U, 1138624U, 1146304U, 1155008U,
1162816U, 1171264U, 1179328U, 1187392U, 1195456U, 1203392U, 1210816U,

67
internal.c

@ -38,12 +38,12 @@
#endif // WITH_CRYPTOPP
size_t ethash_get_datasize(const uint32_t block_number) {
assert(block_number / EPOCH_LENGTH < 500);
assert(block_number / EPOCH_LENGTH < 2048);
return dag_sizes[block_number / EPOCH_LENGTH];
}
size_t ethash_get_cachesize(const uint32_t block_number) {
assert(block_number / EPOCH_LENGTH < 500);
assert(block_number / EPOCH_LENGTH < 2048);
return cache_sizes[block_number / EPOCH_LENGTH];
}
@ -55,7 +55,7 @@ void static ethash_compute_cache_nodes(
ethash_params const *params,
const uint8_t seed[32]) {
assert((params->cache_size % sizeof(node)) == 0);
uint32_t const num_nodes = (uint32_t)(params->cache_size / sizeof(node));
uint32_t const num_nodes = (uint32_t) (params->cache_size / sizeof(node));
SHA3_512(nodes[0].bytes, seed, 32);
@ -68,8 +68,7 @@ void static ethash_compute_cache_nodes(
uint32_t const idx = nodes[i].words[0] % num_nodes;
node data;
data = nodes[(num_nodes - 1 + i) % num_nodes];
for (unsigned w = 0; w != NODE_WORDS; ++w)
{
for (unsigned w = 0; w != NODE_WORDS; ++w) {
data.words[w] ^= nodes[idx].words[w];
}
SHA3_512(nodes[i].bytes, data.bytes, sizeof(data));
@ -86,7 +85,7 @@ void static ethash_compute_cache_nodes(
}
void ethash_mkcache(
ethash_cache *cache,
ethash_cache *cache,
ethash_params const *params,
const uint8_t seed[32]) {
node *nodes = (node *) cache->mem;
@ -99,7 +98,7 @@ void ethash_calculate_dag_item(
const struct ethash_params *params,
const struct ethash_cache *cache) {
uint32_t num_parent_nodes = (uint32_t)(params->cache_size / sizeof(node));
uint32_t num_parent_nodes = (uint32_t) (params->cache_size / sizeof(node));
node const *cache_nodes = (node const *) cache->mem;
node const *init = &cache_nodes[node_index % num_parent_nodes];
@ -115,12 +114,11 @@ void ethash_calculate_dag_item(
__m128i xmm3 = ret->xmm[3];
#endif
for (unsigned i = 0; i != DAG_PARENTS; ++i)
{
uint32_t parent_index = ((node_index ^ i)*FNV_PRIME ^ ret->words[i % NODE_WORDS]) % num_parent_nodes;
for (unsigned i = 0; i != DAG_PARENTS; ++i) {
uint32_t parent_index = ((node_index ^ i) * FNV_PRIME ^ ret->words[i % NODE_WORDS]) % num_parent_nodes;
node const *parent = &cache_nodes[parent_index];
#if defined(_M_X64) && ENABLE_SSE
#if defined(_M_X64) && ENABLE_SSE
{
xmm0 = _mm_mullo_epi32(xmm0, fnv_prime);
xmm1 = _mm_mullo_epi32(xmm1, fnv_prime);
@ -143,7 +141,7 @@ void ethash_calculate_dag_item(
ret->words[w] = fnv_hash(ret->words[w], parent->words[w]);
}
}
#endif
#endif
}
SHA3_512(ret->bytes, ret->bytes, sizeof(node));
@ -164,7 +162,7 @@ void ethash_compute_full_data(
}
static void ethash_hash(
ethash_return_value * ret,
ethash_return_value *ret,
node const *full_nodes,
ethash_cache const *cache,
ethash_params const *params,
@ -174,7 +172,7 @@ static void ethash_hash(
assert((params->full_size % MIX_WORDS) == 0);
// pack hash and nonce together into first 40 bytes of s_mix
assert(sizeof(node)*8 == 512);
assert(sizeof(node) * 8 == 512);
node s_mix[MIX_NODES + 1];
memcpy(s_mix[0].bytes, header_hash, 32);
@ -193,23 +191,21 @@ static void ethash_hash(
}
#endif
node* const mix = s_mix + 1;
node *const mix = s_mix + 1;
for (unsigned w = 0; w != MIX_WORDS; ++w) {
mix->words[w] = s_mix[0].words[w % NODE_WORDS];
}
unsigned const
page_size = sizeof(uint32_t) * MIX_WORDS,
num_full_pages = (unsigned)(params->full_size / page_size);
num_full_pages = (unsigned) (params->full_size / page_size);
for (unsigned i = 0; i != ACCESSES; ++i)
{
uint32_t const index = ((s_mix->words[0] ^ i)*FNV_PRIME ^ mix->words[i % MIX_WORDS]) % num_full_pages;
for (unsigned i = 0; i != ACCESSES; ++i) {
uint32_t const index = ((s_mix->words[0] ^ i) * FNV_PRIME ^ mix->words[i % MIX_WORDS]) % num_full_pages;
for (unsigned n = 0; n != MIX_NODES; ++n)
{
const node * dag_node = &full_nodes[MIX_NODES * index + n];
for (unsigned n = 0; n != MIX_NODES; ++n) {
const node *dag_node = &full_nodes[MIX_NODES * index + n];
if (!full_nodes) {
node tmp_node;
@ -217,7 +213,7 @@ static void ethash_hash(
dag_node = &tmp_node;
}
#if defined(_M_X64) && ENABLE_SSE
#if defined(_M_X64) && ENABLE_SSE
{
__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME);
__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]);
@ -235,19 +231,18 @@ static void ethash_hash(
mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]);
}
}
#endif
#endif
}
}
// compress mix
for (unsigned w = 0; w != MIX_WORDS; w += 4)
{
uint32_t reduction = mix->words[w+0];
reduction = reduction*FNV_PRIME ^ mix->words[w+1];
reduction = reduction*FNV_PRIME ^ mix->words[w+2];
reduction = reduction*FNV_PRIME ^ mix->words[w+3];
mix->words[w/4] = reduction;
for (unsigned w = 0; w != MIX_WORDS; w += 4) {
uint32_t reduction = mix->words[w + 0];
reduction = reduction * FNV_PRIME ^ mix->words[w + 1];
reduction = reduction * FNV_PRIME ^ mix->words[w + 2];
reduction = reduction * FNV_PRIME ^ mix->words[w + 3];
mix->words[w / 4] = reduction;
}
#if BYTE_ORDER != LITTLE_ENDIAN
@ -258,7 +253,7 @@ static void ethash_hash(
memcpy(ret->mix_hash, mix->bytes, 32);
// final Keccak hash
SHA3_256(ret->result, s_mix->bytes, 64+32); // Keccak-256(s + compressed_mix)
SHA3_256(ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
}
void ethash_quick_hash(
@ -267,7 +262,7 @@ void ethash_quick_hash(
const uint64_t nonce,
const uint8_t mix_hash[32]) {
uint8_t buf[64+32];
uint8_t buf[64 + 32];
memcpy(buf, header_hash, 32);
#if BYTE_ORDER != LITTLE_ENDIAN
nonce = fix_endian64(nonce);
@ -275,7 +270,7 @@ void ethash_quick_hash(
memcpy(&(buf[32]), &nonce, 8);
SHA3_512(buf, buf, 40);
memcpy(&(buf[64]), mix_hash, 32);
SHA3_256(return_hash, buf, 64+32);
SHA3_256(return_hash, buf, 64 + 32);
}
int ethash_quick_check_difficulty(
@ -289,10 +284,10 @@ int ethash_quick_check_difficulty(
return ethash_check_difficulty(return_hash, difficulty);
}
void ethash_full(ethash_return_value * ret, void const *full_mem, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) {
void ethash_full(ethash_return_value *ret, void const *full_mem, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) {
ethash_hash(ret, (node const *) full_mem, NULL, params, previous_hash, nonce);
}
void ethash_light(ethash_return_value * ret, ethash_cache const *cache, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) {
void ethash_light(ethash_return_value *ret, ethash_cache const *cache, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) {
ethash_hash(ret, NULL, cache, params, previous_hash, nonce);
}
Loading…
Cancel
Save