|
|
@ -8,11 +8,11 @@ |
|
|
|
|
|
|
|
ethash is distributed in the hope that it will be useful, |
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
|
GNU General Public License for more details. |
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License |
|
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/ |
|
|
|
/** @file internal.c
|
|
|
|
* @author Tim Hughes <tim@twistedfury.com> |
|
|
@ -38,411 +38,413 @@ |
|
|
|
#endif // WITH_CRYPTOPP
|
|
|
|
|
|
|
|
uint64_t ethash_get_datasize(const uint32_t block_number) { |
|
|
|
assert(block_number / EPOCH_LENGTH < 2048); |
|
|
|
return dag_sizes[block_number / EPOCH_LENGTH]; |
|
|
|
assert(block_number / EPOCH_LENGTH < 2048); |
|
|
|
return dag_sizes[block_number / EPOCH_LENGTH]; |
|
|
|
} |
|
|
|
|
|
|
|
uint64_t ethash_get_cachesize(const uint32_t block_number) { |
|
|
|
assert(block_number / EPOCH_LENGTH < 2048); |
|
|
|
return cache_sizes[block_number / EPOCH_LENGTH]; |
|
|
|
assert(block_number / EPOCH_LENGTH < 2048); |
|
|
|
return cache_sizes[block_number / EPOCH_LENGTH]; |
|
|
|
} |
|
|
|
|
|
|
|
// Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014)
|
|
|
|
// https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf
|
|
|
|
// SeqMemoHash(s, R, N)
|
|
|
|
bool static ethash_compute_cache_nodes(node *const nodes, |
|
|
|
ethash_params const *params, |
|
|
|
ethash_h256_t const* seed) |
|
|
|
ethash_params const *params, |
|
|
|
ethash_h256_t const* seed) |
|
|
|
{ |
|
|
|
if (params->cache_size % sizeof(node) != 0) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
uint32_t const num_nodes = (uint32_t) (params->cache_size / sizeof(node)); |
|
|
|
|
|
|
|
SHA3_512(nodes[0].bytes, (uint8_t*)seed, 32); |
|
|
|
|
|
|
|
for (unsigned i = 1; i != num_nodes; ++i) { |
|
|
|
SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64); |
|
|
|
} |
|
|
|
|
|
|
|
for (unsigned j = 0; j != CACHE_ROUNDS; j++) { |
|
|
|
for (unsigned i = 0; i != num_nodes; i++) { |
|
|
|
uint32_t const idx = nodes[i].words[0] % num_nodes; |
|
|
|
node data; |
|
|
|
data = nodes[(num_nodes - 1 + i) % num_nodes]; |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
data.words[w] ^= nodes[idx].words[w]; |
|
|
|
} |
|
|
|
SHA3_512(nodes[i].bytes, data.bytes, sizeof(data)); |
|
|
|
} |
|
|
|
} |
|
|
|
fix_endian_arr32(nodes->words, num_nodes * NODE_WORDS); |
|
|
|
return true; |
|
|
|
if (params->cache_size % sizeof(node) != 0) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
uint32_t const num_nodes = (uint32_t) (params->cache_size / sizeof(node)); |
|
|
|
|
|
|
|
SHA3_512(nodes[0].bytes, (uint8_t*)seed, 32); |
|
|
|
|
|
|
|
for (unsigned i = 1; i != num_nodes; ++i) { |
|
|
|
SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64); |
|
|
|
} |
|
|
|
|
|
|
|
for (unsigned j = 0; j != CACHE_ROUNDS; j++) { |
|
|
|
for (unsigned i = 0; i != num_nodes; i++) { |
|
|
|
uint32_t const idx = nodes[i].words[0] % num_nodes; |
|
|
|
node data; |
|
|
|
data = nodes[(num_nodes - 1 + i) % num_nodes]; |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
data.words[w] ^= nodes[idx].words[w]; |
|
|
|
} |
|
|
|
SHA3_512(nodes[i].bytes, data.bytes, sizeof(data)); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// now perform endian conversion
|
|
|
|
fix_endian_arr32(nodes->words, num_nodes * NODE_WORDS); |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
ethash_cache *ethash_cache_new(ethash_params const *params, ethash_h256_t const *seed) |
|
|
|
{ |
|
|
|
ethash_cache *ret; |
|
|
|
ret = malloc(sizeof(*ret)); |
|
|
|
if (!ret) { |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
ret->mem = malloc((size_t)params->cache_size); |
|
|
|
if (!ret->mem) { |
|
|
|
goto fail_free_cache; |
|
|
|
} |
|
|
|
|
|
|
|
node *nodes = (node*)ret->mem; |
|
|
|
if (!ethash_compute_cache_nodes(nodes, params, seed)) { |
|
|
|
goto fail_free_cache_mem; |
|
|
|
} |
|
|
|
return ret; |
|
|
|
ethash_cache *ret; |
|
|
|
ret = malloc(sizeof(*ret)); |
|
|
|
if (!ret) { |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
ret->mem = malloc((size_t)params->cache_size); |
|
|
|
if (!ret->mem) { |
|
|
|
goto fail_free_cache; |
|
|
|
} |
|
|
|
|
|
|
|
node *nodes = (node*)ret->mem; |
|
|
|
if (!ethash_compute_cache_nodes(nodes, params, seed)) { |
|
|
|
goto fail_free_cache_mem; |
|
|
|
} |
|
|
|
return ret; |
|
|
|
|
|
|
|
fail_free_cache_mem: |
|
|
|
free(ret->mem); |
|
|
|
free(ret->mem); |
|
|
|
fail_free_cache: |
|
|
|
free(ret); |
|
|
|
return NULL; |
|
|
|
free(ret); |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_cache_delete(ethash_cache *c) |
|
|
|
{ |
|
|
|
free(c->mem); |
|
|
|
free(c); |
|
|
|
free(c->mem); |
|
|
|
free(c); |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_calculate_dag_item(node *const ret, |
|
|
|
const unsigned node_index, |
|
|
|
const struct ethash_params *params, |
|
|
|
const struct ethash_cache *cache) |
|
|
|
const unsigned node_index, |
|
|
|
const struct ethash_params *params, |
|
|
|
const struct ethash_cache *cache) |
|
|
|
{ |
|
|
|
uint32_t num_parent_nodes = (uint32_t) (params->cache_size / sizeof(node)); |
|
|
|
node const *cache_nodes = (node const *) cache->mem; |
|
|
|
node const *init = &cache_nodes[node_index % num_parent_nodes]; |
|
|
|
uint32_t num_parent_nodes = (uint32_t) (params->cache_size / sizeof(node)); |
|
|
|
node const *cache_nodes = (node const *) cache->mem; |
|
|
|
node const *init = &cache_nodes[node_index % num_parent_nodes]; |
|
|
|
|
|
|
|
memcpy(ret, init, sizeof(node)); |
|
|
|
ret->words[0] ^= node_index; |
|
|
|
SHA3_512(ret->bytes, ret->bytes, sizeof(node)); |
|
|
|
memcpy(ret, init, sizeof(node)); |
|
|
|
ret->words[0] ^= node_index; |
|
|
|
SHA3_512(ret->bytes, ret->bytes, sizeof(node)); |
|
|
|
|
|
|
|
#if defined(_M_X64) && ENABLE_SSE |
|
|
|
__m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME); |
|
|
|
__m128i xmm0 = ret->xmm[0]; |
|
|
|
__m128i xmm1 = ret->xmm[1]; |
|
|
|
__m128i xmm2 = ret->xmm[2]; |
|
|
|
__m128i xmm3 = ret->xmm[3]; |
|
|
|
__m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME); |
|
|
|
__m128i xmm0 = ret->xmm[0]; |
|
|
|
__m128i xmm1 = ret->xmm[1]; |
|
|
|
__m128i xmm2 = ret->xmm[2]; |
|
|
|
__m128i xmm3 = ret->xmm[3]; |
|
|
|
#endif |
|
|
|
|
|
|
|
for (unsigned i = 0; i != DATASET_PARENTS; ++i) { |
|
|
|
uint32_t parent_index = ((node_index ^ i) * FNV_PRIME ^ ret->words[i % NODE_WORDS]) % num_parent_nodes; |
|
|
|
node const *parent = &cache_nodes[parent_index]; |
|
|
|
for (unsigned i = 0; i != DATASET_PARENTS; ++i) { |
|
|
|
uint32_t parent_index = ((node_index ^ i) * FNV_PRIME ^ ret->words[i % NODE_WORDS]) % num_parent_nodes; |
|
|
|
node const *parent = &cache_nodes[parent_index]; |
|
|
|
|
|
|
|
#if defined(_M_X64) && ENABLE_SSE |
|
|
|
{ |
|
|
|
xmm0 = _mm_mullo_epi32(xmm0, fnv_prime); |
|
|
|
xmm1 = _mm_mullo_epi32(xmm1, fnv_prime); |
|
|
|
xmm2 = _mm_mullo_epi32(xmm2, fnv_prime); |
|
|
|
xmm3 = _mm_mullo_epi32(xmm3, fnv_prime); |
|
|
|
xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]); |
|
|
|
xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]); |
|
|
|
xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]); |
|
|
|
xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]); |
|
|
|
|
|
|
|
// have to write to ret as values are used to compute index
|
|
|
|
ret->xmm[0] = xmm0; |
|
|
|
ret->xmm[1] = xmm1; |
|
|
|
ret->xmm[2] = xmm2; |
|
|
|
ret->xmm[3] = xmm3; |
|
|
|
} |
|
|
|
#else |
|
|
|
{ |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
ret->words[w] = fnv_hash(ret->words[w], parent->words[w]); |
|
|
|
} |
|
|
|
} |
|
|
|
{ |
|
|
|
xmm0 = _mm_mullo_epi32(xmm0, fnv_prime); |
|
|
|
xmm1 = _mm_mullo_epi32(xmm1, fnv_prime); |
|
|
|
xmm2 = _mm_mullo_epi32(xmm2, fnv_prime); |
|
|
|
xmm3 = _mm_mullo_epi32(xmm3, fnv_prime); |
|
|
|
xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]); |
|
|
|
xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]); |
|
|
|
xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]); |
|
|
|
xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]); |
|
|
|
|
|
|
|
// have to write to ret as values are used to compute index
|
|
|
|
ret->xmm[0] = xmm0; |
|
|
|
ret->xmm[1] = xmm1; |
|
|
|
ret->xmm[2] = xmm2; |
|
|
|
ret->xmm[3] = xmm3; |
|
|
|
} |
|
|
|
#else |
|
|
|
{ |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
ret->words[w] = fnv_hash(ret->words[w], parent->words[w]); |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
SHA3_512(ret->bytes, ret->bytes, sizeof(node)); |
|
|
|
SHA3_512(ret->bytes, ret->bytes, sizeof(node)); |
|
|
|
} |
|
|
|
|
|
|
|
bool ethash_compute_full_data(void *mem, |
|
|
|
ethash_params const *params, |
|
|
|
ethash_cache const *cache) |
|
|
|
ethash_params const *params, |
|
|
|
ethash_cache const *cache) |
|
|
|
{ |
|
|
|
if (params->full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 || |
|
|
|
(params->full_size % sizeof(node)) != 0) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
node *full_nodes = mem; |
|
|
|
|
|
|
|
// now compute full nodes
|
|
|
|
for (unsigned n = 0; n != (params->full_size / sizeof(node)); ++n) { |
|
|
|
ethash_calculate_dag_item(&(full_nodes[n]), n, params, cache); |
|
|
|
} |
|
|
|
return true; |
|
|
|
if (params->full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 || |
|
|
|
(params->full_size % sizeof(node)) != 0) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
node *full_nodes = mem; |
|
|
|
|
|
|
|
// now compute full nodes
|
|
|
|
for (unsigned n = 0; n != (params->full_size / sizeof(node)); ++n) { |
|
|
|
ethash_calculate_dag_item(&(full_nodes[n]), n, params, cache); |
|
|
|
} |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
static bool ethash_hash(ethash_return_value *ret, |
|
|
|
node const *full_nodes, |
|
|
|
ethash_cache const *cache, |
|
|
|
ethash_params const *params, |
|
|
|
ethash_h256_t const *header_hash, |
|
|
|
const uint64_t nonce, |
|
|
|
ethash_callback_t callback) |
|
|
|
node const *full_nodes, |
|
|
|
ethash_cache const *cache, |
|
|
|
ethash_params const *params, |
|
|
|
ethash_h256_t const *header_hash, |
|
|
|
const uint64_t nonce, |
|
|
|
ethash_callback_t callback) |
|
|
|
{ |
|
|
|
if (params->full_size % MIX_WORDS != 0) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|
// pack hash and nonce together into first 40 bytes of s_mix
|
|
|
|
assert(sizeof(node) * 8 == 512); |
|
|
|
node s_mix[MIX_NODES + 1]; |
|
|
|
memcpy(s_mix[0].bytes, header_hash, 32); |
|
|
|
fix_endian64(s_mix[0].double_words[4], nonce); |
|
|
|
|
|
|
|
// compute sha3-512 hash and replicate across mix
|
|
|
|
SHA3_512(s_mix->bytes, s_mix->bytes, 40); |
|
|
|
fix_endian_arr32(s_mix[0].words, 16); |
|
|
|
|
|
|
|
node *const mix = s_mix + 1; |
|
|
|
for (unsigned w = 0; w != MIX_WORDS; ++w) { |
|
|
|
mix->words[w] = s_mix[0].words[w % NODE_WORDS]; |
|
|
|
} |
|
|
|
|
|
|
|
unsigned const |
|
|
|
page_size = sizeof(uint32_t) * MIX_WORDS, |
|
|
|
num_full_pages = (unsigned) (params->full_size / page_size); |
|
|
|
|
|
|
|
|
|
|
|
for (unsigned i = 0; i != ACCESSES; ++i) { |
|
|
|
uint32_t const index = ((s_mix->words[0] ^ i) * FNV_PRIME ^ mix->words[i % MIX_WORDS]) % num_full_pages; |
|
|
|
|
|
|
|
for (unsigned n = 0; n != MIX_NODES; ++n) { |
|
|
|
const node *dag_node; |
|
|
|
if (callback && |
|
|
|
callback(((float)(i * n) / (float)(ACCESSES * MIX_NODES) * 100) != 0)) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
if (full_nodes) { |
|
|
|
dag_node = &full_nodes[MIX_NODES * index + n]; |
|
|
|
} else { |
|
|
|
node tmp_node; |
|
|
|
ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, params, cache); |
|
|
|
dag_node = &tmp_node; |
|
|
|
} |
|
|
|
if (params->full_size % MIX_WORDS != 0) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|
// pack hash and nonce together into first 40 bytes of s_mix
|
|
|
|
assert(sizeof(node) * 8 == 512); |
|
|
|
node s_mix[MIX_NODES + 1]; |
|
|
|
memcpy(s_mix[0].bytes, header_hash, 32); |
|
|
|
fix_endian64(s_mix[0].double_words[4], nonce); |
|
|
|
|
|
|
|
// compute sha3-512 hash and replicate across mix
|
|
|
|
SHA3_512(s_mix->bytes, s_mix->bytes, 40); |
|
|
|
fix_endian_arr32(s_mix[0].words, 16); |
|
|
|
|
|
|
|
node *const mix = s_mix + 1; |
|
|
|
for (unsigned w = 0; w != MIX_WORDS; ++w) { |
|
|
|
mix->words[w] = s_mix[0].words[w % NODE_WORDS]; |
|
|
|
} |
|
|
|
|
|
|
|
unsigned const |
|
|
|
page_size = sizeof(uint32_t) * MIX_WORDS, |
|
|
|
num_full_pages = (unsigned) (params->full_size / page_size); |
|
|
|
|
|
|
|
|
|
|
|
for (unsigned i = 0; i != ACCESSES; ++i) { |
|
|
|
uint32_t const index = ((s_mix->words[0] ^ i) * FNV_PRIME ^ mix->words[i % MIX_WORDS]) % num_full_pages; |
|
|
|
|
|
|
|
for (unsigned n = 0; n != MIX_NODES; ++n) { |
|
|
|
const node *dag_node; |
|
|
|
if (callback && |
|
|
|
callback(((float)(i * n) / (float)(ACCESSES * MIX_NODES) * 100) != 0)) { |
|
|
|
return false; |
|
|
|
} |
|
|
|
if (full_nodes) { |
|
|
|
dag_node = &full_nodes[MIX_NODES * index + n]; |
|
|
|
} else { |
|
|
|
node tmp_node; |
|
|
|
ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, params, cache); |
|
|
|
dag_node = &tmp_node; |
|
|
|
} |
|
|
|
|
|
|
|
#if defined(_M_X64) && ENABLE_SSE |
|
|
|
{ |
|
|
|
__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME); |
|
|
|
__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]); |
|
|
|
__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]); |
|
|
|
__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]); |
|
|
|
__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]); |
|
|
|
mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]); |
|
|
|
mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]); |
|
|
|
mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]); |
|
|
|
mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]); |
|
|
|
} |
|
|
|
#else |
|
|
|
{ |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]); |
|
|
|
} |
|
|
|
} |
|
|
|
{ |
|
|
|
__m128i fnv_prime = _mm_set1_epi32(FNV_PRIME); |
|
|
|
__m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]); |
|
|
|
__m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]); |
|
|
|
__m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]); |
|
|
|
__m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]); |
|
|
|
mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]); |
|
|
|
mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]); |
|
|
|
mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]); |
|
|
|
mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]); |
|
|
|
} |
|
|
|
#else |
|
|
|
{ |
|
|
|
for (unsigned w = 0; w != NODE_WORDS; ++w) { |
|
|
|
mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]); |
|
|
|
} |
|
|
|
} |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
// compress mix
|
|
|
|
for (unsigned w = 0; w != MIX_WORDS; w += 4) { |
|
|
|
uint32_t reduction = mix->words[w + 0]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 1]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 2]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 3]; |
|
|
|
mix->words[w / 4] = reduction; |
|
|
|
} |
|
|
|
|
|
|
|
fix_endian_arr32(mix->words, MIX_WORDS / 4); |
|
|
|
memcpy(&ret->mix_hash, mix->bytes, 32); |
|
|
|
// final Keccak hash
|
|
|
|
SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
|
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
// compress mix
|
|
|
|
for (unsigned w = 0; w != MIX_WORDS; w += 4) { |
|
|
|
uint32_t reduction = mix->words[w + 0]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 1]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 2]; |
|
|
|
reduction = reduction * FNV_PRIME ^ mix->words[w + 3]; |
|
|
|
mix->words[w / 4] = reduction; |
|
|
|
} |
|
|
|
|
|
|
|
fix_endian_arr32(mix->words, MIX_WORDS / 4); |
|
|
|
memcpy(&ret->mix_hash, mix->bytes, 32); |
|
|
|
// final Keccak hash
|
|
|
|
SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix)
|
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_quick_hash(ethash_h256_t *return_hash, |
|
|
|
ethash_h256_t const *header_hash, |
|
|
|
const uint64_t nonce, |
|
|
|
ethash_h256_t const *mix_hash) |
|
|
|
ethash_h256_t const *header_hash, |
|
|
|
const uint64_t nonce, |
|
|
|
ethash_h256_t const *mix_hash) |
|
|
|
{ |
|
|
|
|
|
|
|
uint8_t buf[64 + 32]; |
|
|
|
memcpy(buf, header_hash, 32); |
|
|
|
fix_endian64_same(nonce); |
|
|
|
memcpy(&(buf[32]), &nonce, 8); |
|
|
|
SHA3_512(buf, buf, 40); |
|
|
|
memcpy(&(buf[64]), mix_hash, 32); |
|
|
|
SHA3_256(return_hash, buf, 64 + 32); |
|
|
|
uint8_t buf[64 + 32]; |
|
|
|
memcpy(buf, header_hash, 32); |
|
|
|
fix_endian64_same(nonce); |
|
|
|
memcpy(&(buf[32]), &nonce, 8); |
|
|
|
SHA3_512(buf, buf, 40); |
|
|
|
memcpy(&(buf[64]), mix_hash, 32); |
|
|
|
SHA3_256(return_hash, buf, 64 + 32); |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_get_seedhash(ethash_h256_t *seedhash, const uint32_t block_number) |
|
|
|
{ |
|
|
|
ethash_h256_reset(seedhash); |
|
|
|
const uint32_t epochs = block_number / EPOCH_LENGTH; |
|
|
|
for (uint32_t i = 0; i < epochs; ++i) |
|
|
|
SHA3_256(seedhash, (uint8_t*)seedhash, 32); |
|
|
|
ethash_h256_reset(seedhash); |
|
|
|
const uint32_t epochs = block_number / EPOCH_LENGTH; |
|
|
|
for (uint32_t i = 0; i < epochs; ++i) |
|
|
|
SHA3_256(seedhash, (uint8_t*)seedhash, 32); |
|
|
|
} |
|
|
|
|
|
|
|
int ethash_quick_check_difficulty(ethash_h256_t const *header_hash, |
|
|
|
const uint64_t nonce, |
|
|
|
ethash_h256_t const *mix_hash, |
|
|
|
ethash_h256_t const *difficulty) |
|
|
|
const uint64_t nonce, |
|
|
|
ethash_h256_t const *mix_hash, |
|
|
|
ethash_h256_t const *difficulty) |
|
|
|
{ |
|
|
|
|
|
|
|
ethash_h256_t return_hash; |
|
|
|
ethash_quick_hash(&return_hash, header_hash, nonce, mix_hash); |
|
|
|
return ethash_check_difficulty(&return_hash, difficulty); |
|
|
|
ethash_h256_t return_hash; |
|
|
|
ethash_quick_hash(&return_hash, header_hash, nonce, mix_hash); |
|
|
|
return ethash_check_difficulty(&return_hash, difficulty); |
|
|
|
} |
|
|
|
|
|
|
|
ethash_light_t ethash_light_new(ethash_params const *params, ethash_h256_t const *seed) |
|
|
|
{ |
|
|
|
struct ethash_light *ret; |
|
|
|
ret = calloc(sizeof(*ret), 1); |
|
|
|
if (!ret) { |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
ret->cache = ethash_cache_new(params, seed); |
|
|
|
if (!ret->cache) { |
|
|
|
goto fail_free_light; |
|
|
|
} |
|
|
|
return ret; |
|
|
|
struct ethash_light *ret; |
|
|
|
ret = calloc(sizeof(*ret), 1); |
|
|
|
if (!ret) { |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
ret->cache = ethash_cache_new(params, seed); |
|
|
|
if (!ret->cache) { |
|
|
|
goto fail_free_light; |
|
|
|
} |
|
|
|
return ret; |
|
|
|
|
|
|
|
fail_free_light: |
|
|
|
free(ret); |
|
|
|
return NULL; |
|
|
|
free(ret); |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_light_delete(ethash_light_t light) |
|
|
|
{ |
|
|
|
if (light->cache) { |
|
|
|
ethash_cache_delete(light->cache); |
|
|
|
} |
|
|
|
free(light); |
|
|
|
if (light->cache) { |
|
|
|
ethash_cache_delete(light->cache); |
|
|
|
} |
|
|
|
free(light); |
|
|
|
} |
|
|
|
|
|
|
|
bool ethash_light_compute(ethash_return_value *ret, |
|
|
|
ethash_light_t light, |
|
|
|
ethash_params const *params, |
|
|
|
const ethash_h256_t *header_hash, |
|
|
|
const uint64_t nonce) |
|
|
|
ethash_light_t light, |
|
|
|
ethash_params const *params, |
|
|
|
const ethash_h256_t *header_hash, |
|
|
|
const uint64_t nonce) |
|
|
|
{ |
|
|
|
return ethash_hash(ret, NULL, light->cache, params, header_hash, nonce, NULL); |
|
|
|
return ethash_hash(ret, NULL, light->cache, params, header_hash, nonce, NULL); |
|
|
|
} |
|
|
|
|
|
|
|
ethash_cache *ethash_light_get_cache(ethash_light_t light) |
|
|
|
{ |
|
|
|
return light->cache; |
|
|
|
return light->cache; |
|
|
|
} |
|
|
|
|
|
|
|
ethash_cache *ethash_light_acquire_cache(ethash_light_t light) |
|
|
|
{ |
|
|
|
ethash_cache* ret = light->cache; |
|
|
|
light->cache = 0; |
|
|
|
return ret; |
|
|
|
ethash_cache* ret = light->cache; |
|
|
|
light->cache = 0; |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
ethash_full_t ethash_full_new(ethash_params const* params, |
|
|
|
ethash_cache const* cache, |
|
|
|
ethash_callback_t callback) |
|
|
|
ethash_cache const* cache, |
|
|
|
ethash_callback_t callback) |
|
|
|
{ |
|
|
|
struct ethash_full *ret; |
|
|
|
ret = calloc(sizeof(*ret), 1); |
|
|
|
if (!ret) { |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
ret->cache = (ethash_cache*)cache; |
|
|
|
ret->data = malloc((size_t)params->full_size); |
|
|
|
if (!ret->data) { |
|
|
|
goto fail_free_full; |
|
|
|
} |
|
|
|
if (!ethash_compute_full_data(ret->data, params, cache)) { |
|
|
|
goto fail_free_full_data; |
|
|
|
} |
|
|
|
ret->callback = callback; |
|
|
|
return ret; |
|
|
|
struct ethash_full *ret; |
|
|
|
ret = calloc(sizeof(*ret), 1); |
|
|
|
if (!ret) { |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
ret->cache = (ethash_cache*)cache; |
|
|
|
ret->data = malloc((size_t)params->full_size); |
|
|
|
if (!ret->data) { |
|
|
|
goto fail_free_full; |
|
|
|
} |
|
|
|
if (!ethash_compute_full_data(ret->data, params, cache)) { |
|
|
|
goto fail_free_full_data; |
|
|
|
} |
|
|
|
ret->callback = callback; |
|
|
|
return ret; |
|
|
|
|
|
|
|
fail_free_full_data: |
|
|
|
free(ret->data); |
|
|
|
free(ret->data); |
|
|
|
fail_free_full: |
|
|
|
free(ret); |
|
|
|
return NULL; |
|
|
|
free(ret); |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
void ethash_full_delete(ethash_full_t full) |
|
|
|
{ |
|
|
|
if (full->cache) { |
|
|
|
ethash_cache_delete(full->cache); |
|
|
|
} |
|
|
|
free(full->data); |
|
|
|
free(full); |
|
|
|
if (full->cache) { |
|
|
|
ethash_cache_delete(full->cache); |
|
|
|
} |
|
|
|
free(full->data); |
|
|
|
free(full); |
|
|
|
} |
|
|
|
|
|
|
|
bool ethash_full_compute(ethash_return_value *ret, |
|
|
|
ethash_full_t full, |
|
|
|
ethash_params const *params, |
|
|
|
const ethash_h256_t *header_hash, |
|
|
|
const uint64_t nonce) |
|
|
|
ethash_full_t full, |
|
|
|
ethash_params const *params, |
|
|
|
const ethash_h256_t *header_hash, |
|
|
|
const uint64_t nonce) |
|
|
|
{ |
|
|
|
return ethash_hash(ret, |
|
|
|
(node const*)full->data, |
|
|
|
NULL, |
|
|
|
params, |
|
|
|
header_hash, |
|
|
|
nonce, |
|
|
|
full->callback); |
|
|
|
return ethash_hash(ret, |
|
|
|
(node const*)full->data, |
|
|
|
NULL, |
|
|
|
params, |
|
|
|
header_hash, |
|
|
|
nonce, |
|
|
|
full->callback); |
|
|
|
} |
|
|
|
|
|
|
|
ethash_cache *ethash_full_get_cache(ethash_full_t full) |
|
|
|
{ |
|
|
|
return full->cache; |
|
|
|
return full->cache; |
|
|
|
} |
|
|
|
|
|
|
|
ethash_cache *ethash_full_acquire_cache(ethash_full_t full) |
|
|
|
{ |
|
|
|
ethash_cache* ret = full->cache; |
|
|
|
full->cache = 0; |
|
|
|
return ret; |
|
|
|
ethash_cache* ret = full->cache; |
|
|
|
full->cache = 0; |
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
/**
|
|
|
|
* ========================= |
|
|
|
* = DEPRECATED API = |
|
|
|
* = DEPRECATED API = |
|
|
|
* ========================= |
|
|
|
* |
|
|
|
* Kept for backwards compatibility with whoever still uses it. Please consider |
|
|
|
* switching to the new API (look above) |
|
|
|
*/ |
|
|
|
void ethash_mkcache(ethash_cache *cache, |
|
|
|
ethash_params const *params, |
|
|
|
ethash_h256_t const* seed) |
|
|
|
ethash_params const *params, |
|
|
|
ethash_h256_t const* seed) |
|
|
|
{ |
|
|
|
node *nodes = (node*) cache->mem; |
|
|
|
ethash_compute_cache_nodes(nodes, params, seed); |
|
|
|
node *nodes = (node*) cache->mem; |
|
|
|
ethash_compute_cache_nodes(nodes, params, seed); |
|
|
|
} |
|
|
|
void ethash_full(ethash_return_value *ret, |
|
|
|
void const *full_mem, |
|
|
|
ethash_params const *params, |
|
|
|
ethash_h256_t const *header_hash, |
|
|
|
const uint64_t nonce) |
|
|
|
void const *full_mem, |
|
|
|
ethash_params const *params, |
|
|
|
ethash_h256_t const *header_hash, |
|
|
|
const uint64_t nonce) |
|
|
|
{ |
|
|
|
ethash_hash(ret, (node const *) full_mem, NULL, params, header_hash, nonce, NULL); |
|
|
|
ethash_hash(ret, (node const *) full_mem, NULL, params, header_hash, nonce, NULL); |
|
|
|
} |
|
|
|
void ethash_light(ethash_return_value *ret, |
|
|
|
ethash_cache const *cache, |
|
|
|
ethash_params const *params, |
|
|
|
ethash_h256_t const *header_hash, |
|
|
|
const uint64_t nonce) |
|
|
|
ethash_cache const *cache, |
|
|
|
ethash_params const *params, |
|
|
|
ethash_h256_t const *header_hash, |
|
|
|
const uint64_t nonce) |
|
|
|
{ |
|
|
|
ethash_hash(ret, NULL, cache, params, header_hash, nonce, NULL); |
|
|
|
ethash_hash(ret, NULL, cache, params, header_hash, nonce, NULL); |
|
|
|
} |
|
|
|