Browse Source

Scrypt support

cl-refactor
Gav Wood 10 years ago
parent
commit
b0117dcf57
  1. 1
      CMakeLists.txt
  2. 19
      exp/main.cpp
  3. 1
      libdevcrypto/CMakeLists.txt
  4. 8
      libdevcrypto/Common.cpp
  5. 3
      libdevcrypto/Common.h
  6. 5
      libdevcrypto/SecretStore.cpp
  7. 24
      libscrypt/CMakeLists.txt
  8. 9
      libscrypt/LICENSE
  9. 313
      libscrypt/b64.c
  10. 10
      libscrypt/b64.h
  11. 73
      libscrypt/crypto-mcf.c
  12. 48
      libscrypt/crypto-scrypt-saltgen.c
  13. 100
      libscrypt/crypto_scrypt-check.c
  14. 44
      libscrypt/crypto_scrypt-hash.c
  15. 35
      libscrypt/crypto_scrypt-hexconvert.c
  16. 9
      libscrypt/crypto_scrypt-hexconvert.h
  17. 342
      libscrypt/crypto_scrypt-nosse.c
  18. 67
      libscrypt/libscrypt.h
  19. 8
      libscrypt/libscrypt.version
  20. 411
      libscrypt/sha256.c
  21. 70
      libscrypt/sha256.h
  22. 26
      libscrypt/slowequals.c
  23. 5
      libscrypt/slowequals.h
  24. 144
      libscrypt/sysendian.h

1
CMakeLists.txt

@ -364,6 +364,7 @@ if (JSCONSOLE)
endif ()
add_subdirectory(secp256k1)
add_subdirectory(libscrypt)
add_subdirectory(libdevcrypto)
if (GENERAL)

19
exp/main.cpp

@ -36,7 +36,6 @@
#include <boost/algorithm/string.hpp>
#include <libdevcore/TrieDB.h>
#include <libdevcore/TrieHash.h>
/*
#include <libdevcore/RangeMask.h>
#include <libdevcore/Log.h>
#include <libdevcore/Common.h>
@ -57,17 +56,29 @@
#include <liblll/All.h>
#include <libwhisper/WhisperPeer.h>
#include <libwhisper/WhisperHost.h>
#include <test/JsonSpiritHeaders.h>*/
#include <test/JsonSpiritHeaders.h>
using namespace std;
using namespace dev;
/*using namespace dev::eth;
using namespace dev::eth;
using namespace dev::p2p;
using namespace dev::shh;
namespace js = json_spirit;
namespace fs = boost::filesystem;
*/
#if 1
int main()
{
cdebug << pbkdf2("password", asBytes("salt"), 1, 32);
cdebug << pbkdf2("password", asBytes("salt"), 1, 16);
cdebug << pbkdf2("password", asBytes("salt"), 2, 16);
cdebug << pbkdf2("testpassword", fromHex("de5742f1f1045c402296422cee5a8a9ecf0ac5bf594deca1170d22aef33a79cf"), 262144, 16);
return 0;
}
#elif 0
int main()
{
cdebug << "EXP";

1
libdevcrypto/CMakeLists.txt

@ -22,6 +22,7 @@ add_library(${EXECUTABLE} ${SRC_LIST} ${HEADERS})
target_link_libraries(${EXECUTABLE} ${Boost_FILESYSTEM_LIBRARIES})
target_link_libraries(${EXECUTABLE} ${LEVELDB_LIBRARIES})
target_link_libraries(${EXECUTABLE} ${CRYPTOPP_LIBRARIES})
target_link_libraries(${EXECUTABLE} scrypt)
target_link_libraries(${EXECUTABLE} devcore)
install( TARGETS ${EXECUTABLE} RUNTIME DESTINATION bin ARCHIVE DESTINATION lib LIBRARY DESTINATION lib )

8
libdevcrypto/Common.cpp

@ -25,6 +25,7 @@
#include <chrono>
#include <thread>
#include <mutex>
#include <libscrypt/libscrypt.h>
#include <libdevcore/Guards.h>
#include <libdevcore/SHA3.h>
#include <libdevcore/FileSystem.h>
@ -180,6 +181,13 @@ bytes dev::pbkdf2(string const& _pass, bytes const& _salt, unsigned _iterations,
return ret;
}
bytes dev::scrypt(std::string const& _pass, bytes const& _salt, uint64_t _n, uint32_t _r, uint32_t _p, unsigned _dkLen)
{
bytes ret(_dkLen);
libscrypt_scrypt((uint8_t const*)_pass.data(), _pass.size(), _salt.data(), _salt.size(), _n, _r, _p, ret.data(), ret.size());
return ret;
}
KeyPair KeyPair::create()
{
static boost::thread_specific_ptr<mt19937_64> s_eng;

3
libdevcrypto/Common.h

@ -123,6 +123,9 @@ bool verify(Public const& _k, Signature const& _s, h256 const& _hash);
/// Derive key via PBKDF2.
bytes pbkdf2(std::string const& _pass, bytes const& _salt, unsigned _iterations, unsigned _dkLen = 32);
/// Derive key via Scrypt.
bytes scrypt(std::string const& _pass, bytes const& _salt, uint64_t _n, uint32_t _r, uint32_t _p, unsigned _dkLen);
/// Simple class that represents a "key pair".
/// All of the data of the class can be regenerated from the secret key (m_secret) alone.
/// Actually stores a tuplet of secret, public and address (the right 160-bits of the public).

5
libdevcrypto/SecretStore.cpp

@ -188,6 +188,11 @@ bytes SecretStore::decrypt(std::string const& _v, std::string const& _pass)
bytes salt = fromHex(params["salt"].get_str());
derivedKey = pbkdf2(_pass, salt, iterations, params["dklen"].get_int());
}
else if (o["kdf"].get_str() == "scrypt")
{
auto p = o["kdfparams"].get_obj();
derivedKey = scrypt(_pass, fromHex(p["salt"].get_str()), p["n"].get_int(), p["p"].get_int(), p["r"].get_int(), p["dklen"].get_int());
}
else
{
cwarn << "Unknown KDF" << o["kdf"].get_str() << "not supported.";

24
libscrypt/CMakeLists.txt

@ -0,0 +1,24 @@
cmake_policy(SET CMP0015 NEW)
# this policy was introduced in cmake 3.0
# remove if, once 3.0 will be used on unix
if (${CMAKE_MAJOR_VERSION} GREATER 2)
# old policy do not use MACOSX_RPATH
cmake_policy(SET CMP0042 OLD)
endif()
set(CMAKE_AUTOMOC OFF)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -DSTATICLIB")
aux_source_directory(. SRC_LIST)
include_directories(BEFORE ..)
set(EXECUTABLE scrypt)
file(GLOB HEADERS "*.h")
add_library(${EXECUTABLE} ${SRC_LIST} ${HEADERS})
install( TARGETS ${EXECUTABLE} RUNTIME DESTINATION bin ARCHIVE DESTINATION lib LIBRARY DESTINATION lib )
install( FILES ${HEADERS} DESTINATION include/${EXECUTABLE} )

9
libscrypt/LICENSE

@ -0,0 +1,9 @@
Copyright (c) 2013, Joshua Small
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

313
libscrypt/b64.c

@ -0,0 +1,313 @@
/*
* Copyright (c) 1996 by Internet Software Consortium.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM DISCLAIMS
* ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE
* CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
* SOFTWARE.
*/
/*
* Portions Copyright (c) 1995 by International Business Machines, Inc.
*
* International Business Machines, Inc. (hereinafter called IBM) grants
* permission under its copyrights to use, copy, modify, and distribute this
* Software with or without fee, provided that the above copyright notice and
* all paragraphs of this notice appear in all copies, and that the name of IBM
* not be used in connection with the marketing of any product incorporating
* the Software or modifications thereof, without specific, written prior
* permission.
*
* To the extent it has a right to do so, IBM grants an immunity from suit
* under its patents, if any, for the use, sale or manufacture of products to
* the extent that such products are used for performing Domain Name System
* dynamic updates in TCP/IP networks by means of the Software. No immunity is
* granted for any product per se or for any other function of any product.
*
* THE SOFTWARE IS PROVIDED "AS IS", AND IBM DISCLAIMS ALL WARRANTIES,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE. IN NO EVENT SHALL IBM BE LIABLE FOR ANY SPECIAL,
* DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER ARISING
* OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE, EVEN
* IF IBM IS APPRISED OF THE POSSIBILITY OF SUCH DAMAGES.
*/
/*
* Base64 encode/decode functions from OpenBSD (src/lib/libc/net/base64.c).
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/types.h>
#include "b64.h"
static const char Base64[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static const char Pad64 = '=';
/* (From RFC1521 and draft-ietf-dnssec-secext-03.txt)
The following encoding technique is taken from RFC 1521 by Borenstein
and Freed. It is reproduced here in a slightly edited form for
convenience.
A 65-character subset of US-ASCII is used, enabling 6 bits to be
represented per printable character. (The extra 65th character, "=",
is used to signify a special processing function.)
The encoding process represents 24-bit groups of input bits as output
strings of 4 encoded characters. Proceeding from left to right, a
24-bit input group is formed by concatenating 3 8-bit input groups.
These 24 bits are then treated as 4 concatenated 6-bit groups, each
of which is translated into a single digit in the base64 alphabet.
Each 6-bit group is used as an index into an array of 64 printable
characters. The character referenced by the index is placed in the
output string.
Table 1: The Base64 Alphabet
Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y
Special processing is performed if fewer than 24 bits are available
at the end of the data being encoded. A full encoding quantum is
always completed at the end of a quantity. When fewer than 24 input
bits are available in an input group, zero bits are added (on the
right) to form an integral number of 6-bit groups. Padding at the
end of the data is performed using the '=' character.
Since all base64 input is an integral number of octets, only the
-------------------------------------------------
following cases can arise:
(1) the final quantum of encoding input is an integral
multiple of 24 bits; here, the final unit of encoded
output will be an integral multiple of 4 characters
with no "=" padding,
(2) the final quantum of encoding input is exactly 8 bits;
here, the final unit of encoded output will be two
characters followed by two "=" padding characters, or
(3) the final quantum of encoding input is exactly 16 bits;
here, the final unit of encoded output will be three
characters followed by one "=" padding character.
*/
int
libscrypt_b64_encode(src, srclength, target, targsize)
unsigned char const *src;
size_t srclength;
char *target;
size_t targsize;
{
size_t datalength = 0;
unsigned char input[3];
unsigned char output[4];
unsigned int i;
while (2 < srclength) {
input[0] = *src++;
input[1] = *src++;
input[2] = *src++;
srclength -= 3;
output[0] = input[0] >> 2;
output[1] = ((input[0] & 0x03) << 4) + (input[1] >> 4);
output[2] = ((input[1] & 0x0f) << 2) + (input[2] >> 6);
output[3] = input[2] & 0x3f;
if (datalength + 4 > targsize)
return (-1);
target[datalength++] = Base64[output[0]];
target[datalength++] = Base64[output[1]];
target[datalength++] = Base64[output[2]];
target[datalength++] = Base64[output[3]];
}
/* Now we worry about padding. */
if (0 != srclength) {
/* Get what's left. */
input[0] = input[1] = input[2] = '\0';
for (i = 0; i < srclength; i++)
input[i] = *src++;
output[0] = input[0] >> 2;
output[1] = ((input[0] & 0x03) << 4) + (input[1] >> 4);
output[2] = ((input[1] & 0x0f) << 2) + (input[2] >> 6);
if (datalength + 4 > targsize)
return (-1);
target[datalength++] = Base64[output[0]];
target[datalength++] = Base64[output[1]];
if (srclength == 1)
target[datalength++] = Pad64;
else
target[datalength++] = Base64[output[2]];
target[datalength++] = Pad64;
}
if (datalength >= targsize)
return (-1);
target[datalength] = '\0'; /* Returned value doesn't count \0. */
return (int)(datalength);
}
/* skips all whitespace anywhere.
converts characters, four at a time, starting at (or after)
src from base - 64 numbers into three 8 bit bytes in the target area.
it returns the number of data bytes stored at the target, or -1 on error.
*/
int
libscrypt_b64_decode(src, target, targsize)
char const *src;
unsigned char *target;
size_t targsize;
{
int state, ch;
unsigned int tarindex;
unsigned char nextbyte;
char *pos;
state = 0;
tarindex = 0;
while ((ch = (unsigned char)*src++) != '\0') {
if (isspace(ch)) /* Skip whitespace anywhere. */
continue;
if (ch == Pad64)
break;
pos = strchr(Base64, ch);
if (pos == 0) /* A non-base64 character. */
return (-1);
switch (state) {
case 0:
if (target) {
if (tarindex >= targsize)
return (-1);
target[tarindex] = (pos - Base64) << 2;
}
state = 1;
break;
case 1:
if (target) {
if (tarindex >= targsize)
return (-1);
target[tarindex] |= (pos - Base64) >> 4;
nextbyte = ((pos - Base64) & 0x0f) << 4;
if (tarindex + 1 < targsize)
target[tarindex+1] = nextbyte;
else if (nextbyte)
return (-1);
}
tarindex++;
state = 2;
break;
case 2:
if (target) {
if (tarindex >= targsize)
return (-1);
target[tarindex] |= (pos - Base64) >> 2;
nextbyte = ((pos - Base64) & 0x03) << 6;
if (tarindex + 1 < targsize)
target[tarindex+1] = nextbyte;
else if (nextbyte)
return (-1);
}
tarindex++;
state = 3;
break;
case 3:
if (target) {
if (tarindex >= targsize)
return (-1);
target[tarindex] |= (pos - Base64);
}
tarindex++;
state = 0;
break;
}
}
/*
* We are done decoding Base-64 chars. Let's see if we ended
* on a byte boundary, and/or with erroneous trailing characters.
*/
if (ch == Pad64) { /* We got a pad char. */
ch = (unsigned char)*src++; /* Skip it, get next. */
switch (state) {
case 0: /* Invalid = in first position */
case 1: /* Invalid = in second position */
return (-1);
case 2: /* Valid, means one byte of info */
/* Skip any number of spaces. */
for (; ch != '\0'; ch = (unsigned char)*src++)
if (!isspace(ch))
break;
/* Make sure there is another trailing = sign. */
if (ch != Pad64)
return (-1);
ch = (unsigned char)*src++; /* Skip the = */
/* Fall through to "single trailing =" case. */
/* FALLTHROUGH */
case 3: /* Valid, means two bytes of info */
/*
* We know this char is an =. Is there anything but
* whitespace after it?
*/
for (; ch != '\0'; ch = (unsigned char)*src++)
if (!isspace(ch))
return (-1);
/*
* Now make sure for cases 2 and 3 that the "extra"
* bits that slopped past the last full byte were
* zeros. If we don't check them, they become a
* subliminal channel.
*/
if (target && tarindex < targsize &&
target[tarindex] != 0)
return (-1);
}
} else {
/*
* We ended by seeing the end of the string. Make sure we
* have no partial bytes lying around.
*/
if (state != 0)
return (-1);
}
return (tarindex);
}

10
libscrypt/b64.h

@ -0,0 +1,10 @@
/* BASE64 libraries used internally - should not need to be packaged */
#define b64_encode_len(A) ((A+2)/3 * 4 + 1)
#define b64_decode_len(A) (A / 4 * 3 + 2)
int libscrypt_b64_encode(unsigned char const *src, size_t srclength,
/*@out@*/ char *target, size_t targetsize);
int libscrypt_b64_decode(char const *src, /*@out@*/ unsigned char *target,
size_t targetsize);

73
libscrypt/crypto-mcf.c

@ -0,0 +1,73 @@
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include <float.h>
#include <stdint.h>
#include <math.h>
#ifndef S_SPLINT_S /* Including this here triggers a known bug in splint */
#include <unistd.h>
#endif
#include "libscrypt.h"
/* ilog2 for powers of two */
static uint32_t scrypt_ilog2(uint32_t n)
{
#ifndef S_SPLINT_S
/* Check for a valid power of two */
if (n < 2 || (n & (n - 1)))
return -1;
#endif
uint32_t t = 1;
while (((uint32_t)1 << t) < n)
{
if(t > SCRYPT_SAFE_N)
return (uint32_t) -1; /* Check for insanity */
t++;
}
return t;
}
#ifdef _MSC_VER
#define SNPRINTF _snprintf
#else
#define SNPRINTF snprintf
#endif
int libscrypt_mcf(uint32_t N, uint32_t r, uint32_t p, const char *salt,
const char *hash, char *mcf)
{
uint32_t t, params;
int s;
if(!mcf || !hash)
return 0;
/* Although larger values of r, p are valid in scrypt, this mcf format
* limits to 8 bits. If your number is larger, current computers will
* struggle
*/
if(r > (uint8_t)(-1) || p > (uint8_t)(-1))
return 0;
t = scrypt_ilog2(N);
if (t < 1)
return 0;
params = (r << 8) + p;
params += (uint32_t)t << 16;
/* Using snprintf - not checking for overflows. We've already
* determined that mcf should be defined as at least SCRYPT_MCF_LEN
* in length
*/
s = SNPRINTF(mcf, SCRYPT_MCF_LEN, SCRYPT_MCF_ID "$%06x$%s$%s", (unsigned int)params, salt, hash);
if (s > SCRYPT_MCF_LEN)
return 0;
return 1;
}

48
libscrypt/crypto-scrypt-saltgen.c

@ -0,0 +1,48 @@
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <fcntl.h>
#ifndef S_SPLINT_S /* Including this here triggers a known bug in splint */
#include <unistd.h>
#endif
#define RNGDEV "/dev/urandom"
int libscrypt_salt_gen(uint8_t *salt, size_t len)
{
unsigned char buf[len];
size_t data_read = 0;
int urandom = open(RNGDEV, O_RDONLY);
if (urandom < 0)
{
return -1;
}
while (data_read < len) {
ssize_t result = read(urandom, buf + data_read, len - data_read);
if (result < 0)
{
if (errno == EINTR || errno == EAGAIN) {
continue;
}
else {
(void)close(urandom);
return -1;
}
}
data_read += result;
}
/* Failures on close() shouldn't occur with O_RDONLY */
(void)close(urandom);
memcpy(salt, buf, len);
return 0;
}

100
libscrypt/crypto_scrypt-check.c

@ -0,0 +1,100 @@
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "b64.h"
#include "slowequals.h"
#include "libscrypt.h"
#ifdef _WIN32
/* On windows, strtok uses a thread-local static variable in strtok to
* make strtok thread-safe. It also neglects to provide a strtok_r. */
#define strtok_r(str, val, saveptr) strtok((str), (val))
#endif
int libscrypt_check(char *mcf, const char *password)
{
/* Return values:
* <0 error
* == 0 password incorrect
* >0 correct password
*/
#ifndef _WIN32
char *saveptr = NULL;
#endif
uint32_t params;
uint64_t N;
uint8_t r, p;
int retval;
uint8_t hashbuf[64];
char outbuf[128];
uint8_t salt[32];
char *tok;
if(memcmp(mcf, SCRYPT_MCF_ID, 3) != 0)
{
/* Only version 0 supported */
return -1;
}
tok = strtok_r(mcf, "$", &saveptr);
if ( !tok )
return -1;
tok = strtok_r(NULL, "$", &saveptr);
if ( !tok )
return -1;
params = (uint32_t)strtoul(tok, NULL, 16);
if ( params == 0 )
return -1;
tok = strtok_r(NULL, "$", &saveptr);
if ( !tok )
return -1;
p = params & 0xff;
r = (params >> 8) & 0xff;
N = params >> 16;
if (N > SCRYPT_SAFE_N)
return -1;
N = (uint64_t)1 << N;
/* Useful debugging:
printf("We've obtained salt 'N' r p of '%s' %d %d %d\n", tok, N,r,p);
*/
memset(salt, 0, sizeof(salt)); /* Keeps splint happy */
retval = libscrypt_b64_decode(tok, (unsigned char*)salt, sizeof(salt));
if (retval < 1)
return -1;
retval = libscrypt_scrypt((uint8_t*)password, strlen(password), salt,
(uint32_t)retval, N, r, p, hashbuf, sizeof(hashbuf));
if (retval != 0)
return -1;
retval = libscrypt_b64_encode((unsigned char*)hashbuf, sizeof(hashbuf),
outbuf, sizeof(outbuf));
if (retval == 0)
return -1;
tok = strtok_r(NULL, "$", &saveptr);
if ( !tok )
return -1;
if(slow_equals(tok, outbuf) == 0)
return 0;
return 1; /* This is the "else" condition */
}

44
libscrypt/crypto_scrypt-hash.c

@ -0,0 +1,44 @@
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include "b64.h"
#include "libscrypt.h"
int libscrypt_hash(char *dst, const char *passphrase, uint32_t N, uint8_t r,
uint8_t p)
{
int retval;
uint8_t salt[SCRYPT_SALT_LEN];
uint8_t hashbuf[SCRYPT_HASH_LEN];
char outbuf[256];
char saltbuf[256];
if(libscrypt_salt_gen(salt, SCRYPT_SALT_LEN) == -1)
{
return 0;
}
retval = libscrypt_scrypt((const uint8_t*)passphrase, strlen(passphrase),
(uint8_t*)salt, SCRYPT_SALT_LEN, N, r, p, hashbuf, sizeof(hashbuf));
if(retval == -1)
return 0;
retval = libscrypt_b64_encode((unsigned char*)hashbuf, sizeof(hashbuf),
outbuf, sizeof(outbuf));
if(retval == -1)
return 0;
retval = libscrypt_b64_encode((unsigned char *)salt, sizeof(salt),
saltbuf, sizeof(saltbuf));
if(retval == -1)
return 0;
retval = libscrypt_mcf(N, r, p, saltbuf, outbuf, dst);
if(retval != 1)
return 0;
return 1;
}

35
libscrypt/crypto_scrypt-hexconvert.c

@ -0,0 +1,35 @@
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <stdint.h>
/* The hexconvert function is only used to test reference vectors against
* known answers. The contents of this file are therefore a component
* to assist with test harnesses only
*/
int libscrypt_hexconvert(uint8_t *buf, size_t s, char *outbuf, size_t obs)
{
size_t i;
int len = 0;
if (!buf || s < 1 || obs < (s * 2 + 1))
return 0;
memset(outbuf, 0, obs);
for(i=0; i<=(s-1); i++)
{
/* snprintf(outbuf, s,"%s...", outbuf....) has undefined results
* and can't be used. Using offests like this makes snprintf
* nontrivial. we therefore have use inescure sprintf() and
* lengths checked elsewhere (start of function) */
/*@ -bufferoverflowhigh @*/
len += sprintf(outbuf+len, "%02x", (unsigned int) buf[i]);
}
return 1;
}

9
libscrypt/crypto_scrypt-hexconvert.h

@ -0,0 +1,9 @@
#include <stdint.h>
/**
* Converts a binary string to a hex representation of that string
* outbuf must have size of at least buf * 2 + 1.
*/
int libscrypt_hexconvert(const uint8_t *buf, size_t s, char *outbuf,
size_t obs);

342
libscrypt/crypto_scrypt-nosse.c

@ -0,0 +1,342 @@
/*-
* Copyright 2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include <sys/types.h>
#ifndef _WIN32
#include <sys/mman.h>
#endif
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "sha256.h"
#include "sysendian.h"
#include "libscrypt.h"
static void blkcpy(void *, void *, size_t);
static void blkxor(void *, void *, size_t);
static void salsa20_8(uint32_t[16]);
static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t);
static uint64_t integerify(void *, size_t);
static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *);
static void
blkcpy(void * dest, void * src, size_t len)
{
size_t * D = dest;
size_t * S = src;
size_t L = len / sizeof(size_t);
size_t i;
for (i = 0; i < L; i++)
D[i] = S[i];
}
static void
blkxor(void * dest, void * src, size_t len)
{
size_t * D = dest;
size_t * S = src;
size_t L = len / sizeof(size_t);
size_t i;
for (i = 0; i < L; i++)
D[i] ^= S[i];
}
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
static void
salsa20_8(uint32_t B[16])
{
uint32_t x[16];
size_t i;
blkcpy(x, B, 64);
for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns. */
x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9);
x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18);
x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9);
x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18);
x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9);
x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18);
x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9);
x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18);
/* Operate on rows. */
x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9);
x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18);
x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9);
x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18);
x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9);
x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18);
x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9);
x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18);
#undef R
}
for (i = 0; i < 16; i++)
B[i] += x[i];
}
/**
* blockmix_salsa8(Bin, Bout, X, r):
* Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r
* bytes in length; the output Bout must also be the same size. The
* temporary space X must be 64 bytes.
*/
static void
blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r)
{
size_t i;
/* 1: X <-- B_{2r - 1} */
blkcpy(X, &Bin[(2 * r - 1) * 16], 64);
/* 2: for i = 0 to 2r - 1 do */
for (i = 0; i < 2 * r; i += 2) {
/* 3: X <-- H(X \xor B_i) */
blkxor(X, &Bin[i * 16], 64);
salsa20_8(X);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy(&Bout[i * 8], X, 64);
/* 3: X <-- H(X \xor B_i) */
blkxor(X, &Bin[i * 16 + 16], 64);
salsa20_8(X);
/* 4: Y_i <-- X */
/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
blkcpy(&Bout[i * 8 + r * 16], X, 64);
}
}
/**
* integerify(B, r):
* Return the result of parsing B_{2r-1} as a little-endian integer.
*/
static uint64_t
integerify(void * B, size_t r)
{
uint32_t * X = (void *)((uintptr_t)(B) + (2 * r - 1) * 64);
return (((uint64_t)(X[1]) << 32) + X[0]);
}
/**
* smix(B, r, N, V, XY):
* Compute B = SMix_r(B, N). The input B must be 128r bytes in length;
* the temporary storage V must be 128rN bytes in length; the temporary
* storage XY must be 256r + 64 bytes in length. The value N must be a
* power of 2 greater than 1. The arrays B, V, and XY must be aligned to a
* multiple of 64 bytes.
*/
static void
smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY)
{
uint32_t * X = XY;
uint32_t * Y = &XY[32 * r];
uint32_t * Z = &XY[64 * r];
uint64_t i;
uint64_t j;
size_t k;
/* 1: X <-- B */
for (k = 0; k < 32 * r; k++)
X[k] = le32dec(&B[4 * k]);
/* 2: for i = 0 to N - 1 do */
for (i = 0; i < N; i += 2) {
/* 3: V_i <-- X */
blkcpy(&V[i * (32 * r)], X, 128 * r);
/* 4: X <-- H(X) */
blockmix_salsa8(X, Y, Z, r);
/* 3: V_i <-- X */
blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r);
/* 4: X <-- H(X) */
blockmix_salsa8(Y, X, Z, r);
}
/* 6: for i = 0 to N - 1 do */
for (i = 0; i < N; i += 2) {
/* 7: j <-- Integerify(X) mod N */
j = integerify(X, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(X, &V[j * (32 * r)], 128 * r);
blockmix_salsa8(X, Y, Z, r);
/* 7: j <-- Integerify(X) mod N */
j = integerify(Y, r) & (N - 1);
/* 8: X <-- H(X \xor V_j) */
blkxor(Y, &V[j * (32 * r)], 128 * r);
blockmix_salsa8(Y, X, Z, r);
}
/* 10: B' <-- X */
for (k = 0; k < 32 * r; k++)
le32enc(&B[4 * k], X[k]);
}
/**
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
* p, buflen) and write the result into buf. The parameters r, p, and buflen
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
* must be a power of 2 greater than 1.
*
* Return 0 on success; or -1 on error
*/
int
libscrypt_scrypt(const uint8_t * passwd, size_t passwdlen,
const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p,
uint8_t * buf, size_t buflen)
{
void * B0, * V0, * XY0;
uint8_t * B;
uint32_t * V;
uint32_t * XY;
uint32_t i;
/* Sanity-check parameters. */
#if SIZE_MAX > UINT32_MAX
if (buflen > (((uint64_t)(1) << 32) - 1) * 32) {
errno = EFBIG;
goto err0;
}
#endif
if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) {
errno = EFBIG;
goto err0;
}
if (r == 0 || p == 0) {
errno = EINVAL;
goto err0;
}
if (((N & (N - 1)) != 0) || (N < 2)) {
errno = EINVAL;
goto err0;
}
if ((r > SIZE_MAX / 128 / p) ||
#if SIZE_MAX / 256 <= UINT32_MAX
(r > SIZE_MAX / 256) ||
#endif
(N > SIZE_MAX / 128 / r)) {
errno = ENOMEM;
goto err0;
}
/* Allocate memory. */
#ifdef HAVE_POSIX_MEMALIGN
if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0)
goto err0;
B = (uint8_t *)(B0);
if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0)
goto err1;
XY = (uint32_t *)(XY0);
#ifndef MAP_ANON
if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0)
goto err2;
V = (uint32_t *)(V0);
#endif
#else
if ((B0 = malloc(128 * r * p + 63)) == NULL)
goto err0;
B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63));
if ((XY0 = malloc(256 * r + 64 + 63)) == NULL)
goto err1;
XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63));
#ifndef MAP_ANON
if ((V0 = malloc(128 * r * N + 63)) == NULL)
goto err2;
V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63));
#endif
#endif
#ifdef MAP_ANON
if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE,
#ifdef MAP_NOCORE
MAP_ANON | MAP_PRIVATE | MAP_NOCORE,
#else
MAP_ANON | MAP_PRIVATE,
#endif
-1, 0)) == MAP_FAILED)
goto err2;
V = (uint32_t *)(V0);
#endif
/* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */
libscrypt_PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r);
/* 2: for i = 0 to p - 1 do */
for (i = 0; i < p; i++) {
/* 3: B_i <-- MF(B_i, N) */
smix(&B[i * 128 * r], r, N, V, XY);
}
/* 5: DK <-- PBKDF2(P, B, 1, dkLen) */
libscrypt_PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen);
/* Free memory. */
#ifdef MAP_ANON
if (munmap(V0, 128 * r * N))
goto err2;
#else
free(V0);
#endif
free(XY0);
free(B0);
/* Success! */
return (0);
err2:
free(XY0);
err1:
free(B0);
err0:
/* Failure! */
return (-1);
}

67
libscrypt/libscrypt.h

@ -0,0 +1,67 @@
/*-
*/
#ifndef _CRYPTO_SCRYPT_H_
#define _CRYPTO_SCRYPT_H_
#include <stdint.h>
#ifdef __cplusplus
extern "C"{
#endif
/**
* crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
* Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r,
* p, buflen) and write the result into buf. The parameters r, p, and buflen
* must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N
* must be a power of 2 greater than 1.
*
* libscrypt_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen):
* password; duh
* N: CPU AND RAM cost (first modifier)
* r: RAM Cost
* p: CPU cost (parallelisation)
* In short, N is your main performance modifier. Values of r = 8, p = 1 are
* standard unless you want to modify the CPU/RAM ratio.
* Return 0 on success; or -1 on error.
*/
int libscrypt_scrypt(const uint8_t *, size_t, const uint8_t *, size_t, uint64_t,
uint32_t, uint32_t, /*@out@*/ uint8_t *, size_t);
/* Converts a series of input parameters to a MCF form for storage */
int libscrypt_mcf(uint32_t N, uint32_t r, uint32_t p, const char *salt,
const char *hash, char *mcf);
#ifndef _MSC_VER
/* Generates a salt. Uses /dev/urandom/
*/
int libscrypt_salt_gen(/*@out@*/ uint8_t *rand, size_t len);
/* Creates a hash of a passphrase using a randomly generated salt */
/* Returns >0 on success, or 0 for fail */
int libscrypt_hash(char *dst, const char* passphrase, uint32_t N, uint8_t r,
uint8_t p);
#endif
/* Checks a given MCF against a password */
int libscrypt_check(char *mcf, const char *password);
#ifdef __cplusplus
}
#endif
/* Sane default values */
#define SCRYPT_HASH_LEN 64 /* This can be user defined -
*but 64 is the reference size
*/
#define SCRYPT_SAFE_N 30 /* This is much higher than you want. It's just
* a blocker for insane defines
*/
#define SCRYPT_SALT_LEN 16 /* This is just a recommended size */
#define SCRYPT_MCF_LEN 125 /* mcf is 120 byte + nul */
#define SCRYPT_MCF_ID "$s1"
#define SCRYPT_N 16384
#define SCRYPT_r 8
#define SCRYPT_p 16
#endif /* !_CRYPTO_SCRYPT_H_ */

8
libscrypt/libscrypt.version

@ -0,0 +1,8 @@
libscrypt {
global: libscrypt_check;
libscrypt_hash;
libscrypt_mcf;
libscrypt_salt_gen;
libscrypt_scrypt;
local: *;
};

411
libscrypt/sha256.c

@ -0,0 +1,411 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/types.h>
#include <stdint.h>
#include <string.h>
#include "sysendian.h"
#include "sha256.h"
/*
* Encode a length len/4 vector of (uint32_t) into a length len vector of
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
*/
static void
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
be32enc(dst + i * 4, src[i]);
}
/*
* Decode a big-endian length len vector of (unsigned char) into a length
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
*/
static void
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
dst[i] = be32dec(src + i * 4);
}
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t * state, const unsigned char block[64])
{
uint32_t W[64];
uint32_t S[8];
uint32_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
be32dec_vect(W, block, 64);
for (i = 16; i < 64; i++)
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0, 0x428a2f98);
RNDr(S, W, 1, 0x71374491);
RNDr(S, W, 2, 0xb5c0fbcf);
RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b);
RNDr(S, W, 5, 0x59f111f1);
RNDr(S, W, 6, 0x923f82a4);
RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98);
RNDr(S, W, 9, 0x12835b01);
RNDr(S, W, 10, 0x243185be);
RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74);
RNDr(S, W, 13, 0x80deb1fe);
RNDr(S, W, 14, 0x9bdc06a7);
RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1);
RNDr(S, W, 17, 0xefbe4786);
RNDr(S, W, 18, 0x0fc19dc6);
RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f);
RNDr(S, W, 21, 0x4a7484aa);
RNDr(S, W, 22, 0x5cb0a9dc);
RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152);
RNDr(S, W, 25, 0xa831c66d);
RNDr(S, W, 26, 0xb00327c8);
RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3);
RNDr(S, W, 29, 0xd5a79147);
RNDr(S, W, 30, 0x06ca6351);
RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85);
RNDr(S, W, 33, 0x2e1b2138);
RNDr(S, W, 34, 0x4d2c6dfc);
RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354);
RNDr(S, W, 37, 0x766a0abb);
RNDr(S, W, 38, 0x81c2c92e);
RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1);
RNDr(S, W, 41, 0xa81a664b);
RNDr(S, W, 42, 0xc24b8b70);
RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819);
RNDr(S, W, 45, 0xd6990624);
RNDr(S, W, 46, 0xf40e3585);
RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116);
RNDr(S, W, 49, 0x1e376c08);
RNDr(S, W, 50, 0x2748774c);
RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3);
RNDr(S, W, 53, 0x4ed8aa4a);
RNDr(S, W, 54, 0x5b9cca4f);
RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee);
RNDr(S, W, 57, 0x78a5636f);
RNDr(S, W, 58, 0x84c87814);
RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa);
RNDr(S, W, 61, 0xa4506ceb);
RNDr(S, W, 62, 0xbef9a3f7);
RNDr(S, W, 63, 0xc67178f2);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
/* Clean the stack. */
memset(W, 0, 256);
memset(S, 0, 32);
t0 = t1 = 0;
}
static unsigned char PAD[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* Add padding and terminating bit-count. */
static void
SHA256_Pad(SHA256_CTX * ctx)
{
unsigned char len[8];
uint32_t r, plen;
/*
* Convert length to a vector of bytes -- we do this now rather
* than later because the length will change after we pad.
*/
be32enc_vect(len, ctx->count, 8);
/* Add 1--64 bytes so that the resulting length is 56 mod 64 */
r = (ctx->count[1] >> 3) & 0x3f;
plen = (r < 56) ? (56 - r) : (120 - r);
libscrypt_SHA256_Update(ctx, PAD, (size_t)plen);
/* Add the terminating bit-count */
libscrypt_SHA256_Update(ctx, len, 8);
}
/* SHA-256 initialization. Begins a SHA-256 operation. */
void
libscrypt_SHA256_Init(SHA256_CTX * ctx)
{
/* Zero bits processed so far */
ctx->count[0] = ctx->count[1] = 0;
/* Magic initialization constants */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
/* Add bytes into the hash */
void
libscrypt_SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
{
uint32_t bitlen[2];
uint32_t r;
const unsigned char *src = in;
/* Number of bytes left in the buffer from previous updates */
r = (ctx->count[1] >> 3) & 0x3f;
/* Convert the length into a number of bits */
bitlen[1] = ((uint32_t)len) << 3;
bitlen[0] = (uint32_t)(len >> 29);
/* Update number of bits */
if ((ctx->count[1] += bitlen[1]) < bitlen[1])
ctx->count[0]++;
ctx->count[0] += bitlen[0];
/* Handle the case where we don't need to perform any transforms */
if (len < 64 - r) {
memcpy(&ctx->buf[r], src, len);
return;
}
/* Finish the current block */
memcpy(&ctx->buf[r], src, 64 - r);
SHA256_Transform(ctx->state, ctx->buf);
src += 64 - r;
len -= 64 - r;
/* Perform complete blocks */
while (len >= 64) {
SHA256_Transform(ctx->state, src);
src += 64;
len -= 64;
}
/* Copy left over data into buffer */
memcpy(ctx->buf, src, len);
}
/*
* SHA-256 finalization. Pads the input data, exports the hash value,
* and clears the context state.
*/
void
libscrypt_SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
{
/* Add padding */
SHA256_Pad(ctx);
/* Write the hash */
be32enc_vect(digest, ctx->state, 32);
/* Clear the context state */
memset((void *)ctx, 0, sizeof(*ctx));
}
/* Initialize an HMAC-SHA256 operation with the given key. */
void
libscrypt_HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
{
unsigned char pad[64];
unsigned char khash[32];
const unsigned char * K = _K;
size_t i;
/* If Klen > 64, the key is really SHA256(K). */
if (Klen > 64) {
libscrypt_SHA256_Init(&ctx->ictx);
libscrypt_SHA256_Update(&ctx->ictx, K, Klen);
libscrypt_SHA256_Final(khash, &ctx->ictx);
K = khash;
Klen = 32;
}
/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
libscrypt_SHA256_Init(&ctx->ictx);
memset(pad, 0x36, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
libscrypt_SHA256_Update(&ctx->ictx, pad, 64);
/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
libscrypt_SHA256_Init(&ctx->octx);
memset(pad, 0x5c, 64);
for (i = 0; i < Klen; i++)
pad[i] ^= K[i];
libscrypt_SHA256_Update(&ctx->octx, pad, 64);
/* Clean the stack. */
memset(khash, 0, 32);
}
/* Add bytes to the HMAC-SHA256 operation. */
void
libscrypt_HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
{
/* Feed data to the inner SHA256 operation. */
libscrypt_SHA256_Update(&ctx->ictx, in, len);
}
/* Finish an HMAC-SHA256 operation. */
void
libscrypt_HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
{
unsigned char ihash[32];
/* Finish the inner SHA256 operation. */
libscrypt_SHA256_Final(ihash, &ctx->ictx);
/* Feed the inner hash to the outer SHA256 operation. */
libscrypt_SHA256_Update(&ctx->octx, ihash, 32);
/* Finish the outer SHA256 operation. */
libscrypt_SHA256_Final(digest, &ctx->octx);
/* Clean the stack. */
memset(ihash, 0, 32);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
libscrypt_PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
{
HMAC_SHA256_CTX PShctx, hctx;
size_t i;
uint8_t ivec[4];
uint8_t U[32];
uint8_t T[32];
uint64_t j;
int k;
size_t clen;
/* Compute HMAC state after processing P and S. */
libscrypt_HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
libscrypt_HMAC_SHA256_Update(&PShctx, salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
libscrypt_HMAC_SHA256_Update(&hctx, ivec, 4);
libscrypt_HMAC_SHA256_Final(U, &hctx);
/* T_i = U_1 ... */
memcpy(T, U, 32);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
libscrypt_HMAC_SHA256_Init(&hctx, passwd, passwdlen);
libscrypt_HMAC_SHA256_Update(&hctx, U, 32);
libscrypt_HMAC_SHA256_Final(U, &hctx);
/* ... xor U_j ... */
for (k = 0; k < 32; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * 32;
if (clen > 32)
clen = 32;
memcpy(&buf[i * 32], T, clen);
}
/* Clean PShctx, since we never called _Final on it. */
memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
}

70
libscrypt/sha256.h

@ -0,0 +1,70 @@
/*-
* Copyright 2005,2007,2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/lib/libmd/sha256.h,v 1.2 2006/01/17 15:35:56 phk Exp $
*/
#ifndef _SHA256_H_
#define _SHA256_H_
#include <sys/types.h>
#include <stdint.h>
typedef struct libscrypt_SHA256Context {
uint32_t state[8];
uint32_t count[2];
unsigned char buf[64];
} SHA256_CTX;
typedef struct libscrypt_HMAC_SHA256Context {
SHA256_CTX ictx;
SHA256_CTX octx;
} HMAC_SHA256_CTX;
void libscrypt_SHA256_Init(/*@out@*/ SHA256_CTX *);
void libscrypt_SHA256_Update(SHA256_CTX *, const void *, size_t);
/* Original declaration:
* void SHA256_Final(unsigned char [32], SHA256_CTX *);
*/
void libscrypt_SHA256_Final(/*@out@*/ unsigned char [], SHA256_CTX *);
void libscrypt_HMAC_SHA256_Init(HMAC_SHA256_CTX *, const void *, size_t);
void libscrypt_HMAC_SHA256_Update(HMAC_SHA256_CTX *, const void *, size_t);
/* Original declaration:
* void HMAC_SHA256_Final(unsigned char [32], HMAC_SHA256_CTX *);
*/
void libscrypt_HMAC_SHA256_Final(unsigned char [], HMAC_SHA256_CTX *);
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void libscrypt_PBKDF2_SHA256(const uint8_t *, size_t, const uint8_t *, size_t,
uint64_t, uint8_t *, size_t);
#endif /* !_SHA256_H_ */

26
libscrypt/slowequals.c

@ -0,0 +1,26 @@
#include <string.h>
/* Implements a constant time version of strcmp()
* Will return 1 if a and b are equal, 0 if they are not */
int slow_equals(const char* a, const char* b)
{
size_t lena, lenb, diff, i;
lena = strlen(a);
lenb = strlen(b);
diff = strlen(a) ^ strlen(b);
for(i=0; i<lena && i<lenb; i++)
{
diff |= a[i] ^ b[i];
}
if (diff == 0)
{
return 1;
}
else
{
return 0;
}
}

5
libscrypt/slowequals.h

@ -0,0 +1,5 @@
/* Implements a constant time version of strcmp()
* Will return 1 if a and b are equal, 0 if they are not */
int slow_equals(const char* a, const char* b);

144
libscrypt/sysendian.h

@ -0,0 +1,144 @@
/*-
* Copyright 2007-2009 Colin Percival
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#ifndef _SYSENDIAN_H_
#define _SYSENDIAN_H_
/* If we don't have be64enc, the <sys/endian.h> we have isn't usable. */
#if !HAVE_DECL_BE64ENC
#undef HAVE_SYS_ENDIAN_H
#endif
#ifdef HAVE_SYS_ENDIAN_H
#include <sys/endian.h>
#else
#include <stdint.h>
#ifdef _MSC_VER
#define INLINE __inline
#else
#define INLINE inline
#endif
static INLINE uint32_t
be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static INLINE void
be32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
static INLINE uint64_t
be64dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint64_t)(p[7]) + ((uint64_t)(p[6]) << 8) +
((uint64_t)(p[5]) << 16) + ((uint64_t)(p[4]) << 24) +
((uint64_t)(p[3]) << 32) + ((uint64_t)(p[2]) << 40) +
((uint64_t)(p[1]) << 48) + ((uint64_t)(p[0]) << 56));
}
static INLINE void
be64enc(void *pp, uint64_t x)
{
uint8_t * p = (uint8_t *)pp;
p[7] = x & 0xff;
p[6] = (x >> 8) & 0xff;
p[5] = (x >> 16) & 0xff;
p[4] = (x >> 24) & 0xff;
p[3] = (x >> 32) & 0xff;
p[2] = (x >> 40) & 0xff;
p[1] = (x >> 48) & 0xff;
p[0] = (x >> 56) & 0xff;
}
static INLINE uint32_t
le32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
}
static INLINE void
le32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
static INLINE uint64_t
le64dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint64_t)(p[0]) + ((uint64_t)(p[1]) << 8) +
((uint64_t)(p[2]) << 16) + ((uint64_t)(p[3]) << 24) +
((uint64_t)(p[4]) << 32) + ((uint64_t)(p[5]) << 40) +
((uint64_t)(p[6]) << 48) + ((uint64_t)(p[7]) << 56));
}
static INLINE void
le64enc(void *pp, uint64_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
p[4] = (x >> 32) & 0xff;
p[5] = (x >> 40) & 0xff;
p[6] = (x >> 48) & 0xff;
p[7] = (x >> 56) & 0xff;
}
#endif /* !HAVE_SYS_ENDIAN_H */
#endif /* !_SYSENDIAN_H_ */
Loading…
Cancel
Save