Browse Source

Optimizer for literals and identity operations.

cl-refactor
Christian 10 years ago
parent
commit
e9972a551c
  1. 117
      libevmcore/Assembly.cpp
  2. 3
      libevmcore/Assembly.h

117
libevmcore/Assembly.cpp

@ -27,6 +27,32 @@ using namespace std;
using namespace dev;
using namespace dev::eth;
unsigned AssemblyItem::bytesRequired(unsigned _addressLength) const
{
switch (m_type)
{
case Operation:
case Tag: // 1 byte for the JUMPDEST
return 1;
case PushString:
return 33;
case Push:
return 1 + max<unsigned>(1, dev::bytesRequired(m_data));
case PushSubSize:
return 4; // worst case: a 16MB program
case PushTag:
case PushData:
case PushSub:
return 1 + _addressLength;
case NoOptimizeBegin:
case NoOptimizeEnd:
return 0;
default:
break;
}
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
int AssemblyItem::deposit() const
{
switch (m_type)
@ -51,32 +77,7 @@ unsigned Assembly::bytesRequired() const
ret += i.second.size();
for (AssemblyItem const& i: m_items)
switch (i.m_type)
{
case Operation:
case Tag: // 1 byte for the JUMPDEST
ret++;
break;
case PushString:
ret += 33;
break;
case Push:
ret += 1 + max<unsigned>(1, dev::bytesRequired(i.m_data));
break;
case PushSubSize:
ret += 4; // worst case: a 16MB program
break;
case PushTag:
case PushData:
case PushSub:
ret += 1 + br;
break;
case NoOptimizeBegin:
case NoOptimizeEnd:
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
ret += i.bytesRequired(br);
if (dev::bytesRequired(ret) <= br)
return ret;
}
@ -243,6 +244,18 @@ inline bool popCountIncreased(AssemblyItemsConstRef _pre, AssemblyItems const& _
return count_if(begin(_post), end(_post), isPop) > count_if(begin(_pre), end(_pre), isPop);
}
//@todo this has to move to a special optimizer class soon
template<class Iterator>
unsigned bytesRequiredBySlice(Iterator _begin, Iterator _end)
{
// this is only used in the optimizer, so we can provide a guess for the address length
unsigned addressLength = 4;
unsigned size = 0;
for (; _begin != _end; ++_begin)
size += _begin->bytesRequired(addressLength);
return size;
}
struct OptimiserChannel: public LogChannel { static const char* name() { return "OPT"; } static const int verbosity = 12; };
#define copt dev::LogOutputStream<OptimiserChannel, true>()
@ -258,7 +271,7 @@ Assembly& Assembly::optimise(bool _enable)
u256 mask = (u256(1) << testBit) - 1;
return boost::multiprecision::bit_test(b, testBit) ? b | ~mask : b & mask;
};
map<Instruction, function<u256(u256, u256)>> c_simple =
map<Instruction, function<u256(u256, u256)>> const c_simple =
{
{ Instruction::SUB, [](u256 a, u256 b)->u256{return a - b;} },
{ Instruction::DIV, [](u256 a, u256 b)->u256{return a / b;} },
@ -273,7 +286,7 @@ Assembly& Assembly::optimise(bool _enable)
{ Instruction::SGT, [](u256 a, u256 b)->u256{return u2s(a) > u2s(b) ? 1 : 0;} },
{ Instruction::EQ, [](u256 a, u256 b)->u256{return a == b ? 1 : 0;} },
};
map<Instruction, function<u256(u256, u256)>> c_associative =
map<Instruction, function<u256(u256, u256)>> const c_associative =
{
{ Instruction::ADD, [](u256 a, u256 b)->u256{return a + b;} },
{ Instruction::MUL, [](u256 a, u256 b)->u256{return a * b;} },
@ -281,6 +294,8 @@ Assembly& Assembly::optimise(bool _enable)
{ Instruction::OR, [](u256 a, u256 b)->u256{return a | b;} },
{ Instruction::XOR, [](u256 a, u256 b)->u256{return a ^ b;} },
};
std::vector<pair<AssemblyItem, u256>> const c_identities =
{ { Instruction::ADD, 0}, { Instruction::MUL, 1}, { Instruction::MOD, 0}, { Instruction::OR, 0}, { Instruction::XOR, 0} };
std::vector<pair<AssemblyItems, function<AssemblyItems(AssemblyItemsConstRef)>>> rules =
{
{ { Push, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
@ -299,8 +314,11 @@ Assembly& Assembly::optimise(bool _enable)
rules.push_back({ { Push, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[1].data(), m[0].data()) }; } });
rules.push_back({ { Push, i.first, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[2].data(), m[0].data()), i.first }; } });
}
for (auto const& i: c_identities)
rules.push_back({{Push, i.first}, [&](AssemblyItemsConstRef m) -> AssemblyItems
{ return m[0].data() == i.second ? AssemblyItems() : m.toVector(); }});
// jump to next instruction
rules.push_back({ { PushTag, Instruction::JUMP, Tag }, [&](AssemblyItemsConstRef m) -> AssemblyItems { if (m[0].m_data == m[2].m_data) return {m[2]}; else return m.toVector(); }});
rules.push_back({ { PushTag, Instruction::JUMP, Tag }, [](AssemblyItemsConstRef m) -> AssemblyItems { if (m[0].m_data == m[2].m_data) return {m[2]}; else return m.toVector(); }});
// pop optimization, do not compute values that are popped again anyway
rules.push_back({ { AssemblyItem(UndefinedItem), Instruction::POP }, [](AssemblyItemsConstRef m) -> AssemblyItems
@ -315,6 +333,29 @@ Assembly& Assembly::optimise(bool _enable)
return m.toVector();
return AssemblyItems(info.args, Instruction::POP);
} });
// compute constants close to powers of two by expressions
auto computeConstants = [](AssemblyItemsConstRef m) -> AssemblyItems
{
u256 const& c = m[0].data();
unsigned const minBits = 4 * 8;
if (c < (bigint(1) << minBits))
return m.toVector(); // we need at least "PUSH1 <bits> PUSH1 <2> EXP"
if (c == u256(-1))
return {u256(0), Instruction::NOT};
for (unsigned bits = minBits; bits < 256; ++bits)
{
bigint const diff = c - (bigint(1) << bits);
if (abs(diff) > 0xff)
continue;
AssemblyItems powerOfTwo{u256(bits), u256(2), Instruction::EXP};
if (diff == 0)
return powerOfTwo;
return AssemblyItems{u256(abs(diff))} + powerOfTwo +
AssemblyItems{diff > 0 ? Instruction::ADD : Instruction::SUB};
}
return m.toVector();
};
rules.push_back({{Push}, computeConstants});
copt << *this;
@ -336,15 +377,27 @@ Assembly& Assembly::optimise(bool _enable)
if (matches(vr, &r.first))
{
auto rw = r.second(vr);
if (rw.size() < vr.size() || (rw.size() == vr.size() && popCountIncreased(vr, rw)))
unsigned const vrSize = bytesRequiredBySlice(vr.begin(), vr.end());
unsigned const rwSize = bytesRequiredBySlice(rw.begin(), rw.end());
//@todo check the actual size (including constant sizes)
if (rwSize < vrSize || (rwSize == vrSize && popCountIncreased(vr, rw)))
{
copt << vr << "matches" << AssemblyItemsConstRef(&r.first) << "becomes...";
for (unsigned j = 0; j < vr.size(); ++j)
copt << AssemblyItemsConstRef(&rw);
if (rw.size() > vr.size())
{
// create hole in the vector
unsigned sizeIncrease = rw.size() - vr.size();
m_items.resize(m_items.size() + sizeIncrease, AssemblyItem(UndefinedItem));
move_backward(m_items.begin() + i, m_items.end() - sizeIncrease, m_items.end());
}
for (unsigned j = 0; j < max(rw.size(), vr.size()); ++j)
if (j < rw.size())
m_items[i + j] = rw[j];
else
m_items.erase(m_items.begin() + i + rw.size());
copt << AssemblyItemsConstRef(&rw);
count++;
copt << "Now:\n" << m_items;
}

3
libevmcore/Assembly.h

@ -51,6 +51,9 @@ public:
AssemblyItemType type() const { return m_type; }
u256 data() const { return m_data; }
/// @returns an upper bound for the number of bytes required by this item, assuming that
/// the value of a jump tag takes @a _addressLength bytes.
unsigned bytesRequired(unsigned _addressLength) const;
int deposit() const;
bool match(AssemblyItem const& _i) const { return _i.m_type == UndefinedItem || (m_type == _i.m_type && (m_type != Operation || m_data == _i.m_data)); }

Loading…
Cancel
Save