Browse Source

Add more files.

cl-refactor
Gav Wood 10 years ago
parent
commit
fae9208c06
  1. 47
      libethash-cl/CMakeLists.txt
  2. 86
      libethash-cl/bin2h.cmake
  3. 4014
      libethash-cl/cl.hpp
  4. 332
      libethash-cl/ethash_cl_miner.cpp
  5. 43
      libethash-cl/ethash_cl_miner.h
  6. 460
      libethash-cl/ethash_cl_miner_kernel.cl

47
libethash-cl/CMakeLists.txt

@ -0,0 +1,47 @@
cmake_minimum_required(VERSION 2.8)
set(LIBRARY ethash-cl)
#set(CMAKE_BUILD_TYPE Release)
include(bin2h.cmake)
bin2h(SOURCE_FILE ethash_cl_miner_kernel.cl
VARIABLE_NAME ethash_cl_miner_kernel
HEADER_FILE ${CMAKE_CURRENT_BINARY_DIR}/ethash_cl_miner_kernel.h)
if (NOT MSVC)
# Initialize CXXFLAGS for c++11
set(CMAKE_CXX_FLAGS "-Wall -std=c++11")
set(CMAKE_CXX_FLAGS_DEBUG "-O0 -g")
set(CMAKE_CXX_FLAGS_MINSIZEREL "-Os -DNDEBUG")
set(CMAKE_CXX_FLAGS_RELEASE "-O4 -DNDEBUG")
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "-O2 -g")
# Compiler-specific C++11 activation.
if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "GNU")
execute_process(
COMMAND ${CMAKE_CXX_COMPILER} -dumpversion OUTPUT_VARIABLE GCC_VERSION)
if (NOT (GCC_VERSION VERSION_GREATER 4.7 OR GCC_VERSION VERSION_EQUAL 4.7))
message(FATAL_ERROR "${PROJECT_NAME} requires g++ 4.7 or greater.")
endif ()
elseif ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -stdlib=libc++")
else ()
message(FATAL_ERROR "Your C++ compiler does not support C++11.")
endif ()
endif()
set(OpenCL_FOUND TRUE)
set(OpenCL_INCLUDE_DIRS /usr/include/CL)
set(OpenCL_LIBRARIES -lOpenCL)
if (NOT OpenCL_FOUND)
find_package(OpenCL)
endif()
if (OpenCL_FOUND)
set(CMAKE_CXX_FLAGS "-std=c++11 -Wall -Wno-unknown-pragmas -Wextra -Werror -pedantic -fPIC ${CMAKE_CXX_FLAGS}")
include_directories(${OpenCL_INCLUDE_DIRS} ${CMAKE_CURRENT_BINARY_DIR})
include_directories(..)
add_library(${LIBRARY} ethash_cl_miner.cpp ethash_cl_miner.h cl.hpp)
TARGET_LINK_LIBRARIES(${LIBRARY} ${OpenCL_LIBRARIES} ethash)
endif()

86
libethash-cl/bin2h.cmake

@ -0,0 +1,86 @@
# https://gist.github.com/sivachandran/3a0de157dccef822a230
include(CMakeParseArguments)
# Function to wrap a given string into multiple lines at the given column position.
# Parameters:
# VARIABLE - The name of the CMake variable holding the string.
# AT_COLUMN - The column position at which string will be wrapped.
function(WRAP_STRING)
set(oneValueArgs VARIABLE AT_COLUMN)
cmake_parse_arguments(WRAP_STRING "${options}" "${oneValueArgs}" "" ${ARGN})
string(LENGTH ${${WRAP_STRING_VARIABLE}} stringLength)
math(EXPR offset "0")
while(stringLength GREATER 0)
if(stringLength GREATER ${WRAP_STRING_AT_COLUMN})
math(EXPR length "${WRAP_STRING_AT_COLUMN}")
else()
math(EXPR length "${stringLength}")
endif()
string(SUBSTRING ${${WRAP_STRING_VARIABLE}} ${offset} ${length} line)
set(lines "${lines}\n${line}")
math(EXPR stringLength "${stringLength} - ${length}")
math(EXPR offset "${offset} + ${length}")
endwhile()
set(${WRAP_STRING_VARIABLE} "${lines}" PARENT_SCOPE)
endfunction()
# Function to embed contents of a file as byte array in C/C++ header file(.h). The header file
# will contain a byte array and integer variable holding the size of the array.
# Parameters
# SOURCE_FILE - The path of source file whose contents will be embedded in the header file.
# VARIABLE_NAME - The name of the variable for the byte array. The string "_SIZE" will be append
# to this name and will be used a variable name for size variable.
# HEADER_FILE - The path of header file.
# APPEND - If specified appends to the header file instead of overwriting it
# NULL_TERMINATE - If specified a null byte(zero) will be append to the byte array. This will be
# useful if the source file is a text file and we want to use the file contents
# as string. But the size variable holds size of the byte array without this
# null byte.
# Usage:
# bin2h(SOURCE_FILE "Logo.png" HEADER_FILE "Logo.h" VARIABLE_NAME "LOGO_PNG")
function(BIN2H)
set(options APPEND NULL_TERMINATE)
set(oneValueArgs SOURCE_FILE VARIABLE_NAME HEADER_FILE)
cmake_parse_arguments(BIN2H "${options}" "${oneValueArgs}" "" ${ARGN})
# reads source file contents as hex string
file(READ ${BIN2H_SOURCE_FILE} hexString HEX)
string(LENGTH ${hexString} hexStringLength)
# appends null byte if asked
if(BIN2H_NULL_TERMINATE)
set(hexString "${hexString}00")
endif()
# wraps the hex string into multiple lines at column 32(i.e. 16 bytes per line)
wrap_string(VARIABLE hexString AT_COLUMN 32)
math(EXPR arraySize "${hexStringLength} / 2")
# adds '0x' prefix and comma suffix before and after every byte respectively
string(REGEX REPLACE "([0-9a-f][0-9a-f])" "0x\\1, " arrayValues ${hexString})
# removes trailing comma
string(REGEX REPLACE ", $" "" arrayValues ${arrayValues})
# converts the variable name into proper C identifier
IF (${CMAKE_VERSION} GREATER 2.8.10) # fix for legacy cmake
string(MAKE_C_IDENTIFIER "${BIN2H_VARIABLE_NAME}" BIN2H_VARIABLE_NAME)
ENDIF()
string(TOUPPER "${BIN2H_VARIABLE_NAME}" BIN2H_VARIABLE_NAME)
# declares byte array and the length variables
set(arrayDefinition "const unsigned char ${BIN2H_VARIABLE_NAME}[] = { ${arrayValues} };")
set(arraySizeDefinition "const size_t ${BIN2H_VARIABLE_NAME}_SIZE = ${arraySize};")
set(declarations "${arrayDefinition}\n\n${arraySizeDefinition}\n\n")
if(BIN2H_APPEND)
file(APPEND ${BIN2H_HEADER_FILE} "${declarations}")
else()
file(WRITE ${BIN2H_HEADER_FILE} "${declarations}")
endif()
endfunction()

4014
libethash-cl/cl.hpp

File diff suppressed because it is too large

332
libethash-cl/ethash_cl_miner.cpp

@ -0,0 +1,332 @@
/*
This file is part of c-ethash.
c-ethash is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
c-ethash is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file ethash_cl_miner.cpp
* @author Tim Hughes <tim@twistedfury.com>
* @date 2015
*/
#define _CRT_SECURE_NO_WARNINGS
#include <cstdio>
#include <cstdlib>
#include <assert.h>
#include <queue>
#include <vector>
#include <libethash/util.h>
#include <libethash/ethash.h>
#include "ethash_cl_miner.h"
#include "ethash_cl_miner_kernel.h"
#define ETHASH_BYTES 32
// workaround lame platforms
#if !CL_VERSION_1_2
#define CL_MAP_WRITE_INVALIDATE_REGION CL_MAP_WRITE
#define CL_MEM_HOST_READ_ONLY 0
#endif
#undef min
#undef max
static void add_definition(std::string& source, char const* id, unsigned value)
{
char buf[256];
sprintf(buf, "#define %s %uu\n", id, value);
source.insert(source.begin(), buf, buf + strlen(buf));
}
ethash_cl_miner::ethash_cl_miner()
: m_opencl_1_1()
{
}
void ethash_cl_miner::finish()
{
if (m_queue())
{
m_queue.finish();
}
}
bool ethash_cl_miner::init(ethash_params const& params, std::function<void(void*)> _fillDAG, unsigned workgroup_size)
{
// store params
m_params = params;
// get all platforms
std::vector<cl::Platform> platforms;
cl::Platform::get(&platforms);
if (platforms.empty())
{
debugf("No OpenCL platforms found.\n");
return false;
}
// use default platform
fprintf(stderr, "Using platform: %s\n", platforms[0].getInfo<CL_PLATFORM_NAME>().c_str());
// get GPU device of the default platform
std::vector<cl::Device> devices;
platforms[0].getDevices(CL_DEVICE_TYPE_ALL, &devices);
if (devices.empty())
{
debugf("No OpenCL devices found.\n");
return false;
}
// use default device
unsigned device_num = 0;
cl::Device& device = devices[device_num];
std::string device_version = device.getInfo<CL_DEVICE_VERSION>();
fprintf(stderr, "Using device: %s (%s)\n", device.getInfo<CL_DEVICE_NAME>().c_str(),device_version.c_str());
if (strncmp("OpenCL 1.0", device_version.c_str(), 10) == 0)
{
debugf("OpenCL 1.0 is not supported.\n");
return false;
}
if (strncmp("OpenCL 1.1", device_version.c_str(), 10) == 0)
{
m_opencl_1_1 = true;
}
// create context
m_context = cl::Context(std::vector<cl::Device>(&device, &device + 1));
m_queue = cl::CommandQueue(m_context, device);
// use requested workgroup size, but we require multiple of 8
m_workgroup_size = ((workgroup_size + 7) / 8) * 8;
// patch source code
std::string code(ETHASH_CL_MINER_KERNEL, ETHASH_CL_MINER_KERNEL + ETHASH_CL_MINER_KERNEL_SIZE);
add_definition(code, "GROUP_SIZE", m_workgroup_size);
add_definition(code, "DAG_SIZE", (unsigned)(params.full_size / ETHASH_MIX_BYTES));
add_definition(code, "ACCESSES", ETHASH_ACCESSES);
add_definition(code, "MAX_OUTPUTS", c_max_search_results);
//debugf("%s", code.c_str());
// create miner OpenCL program
cl::Program::Sources sources;
sources.push_back({code.c_str(), code.size()});
cl::Program program(m_context, sources);
try
{
program.build({device});
}
catch (cl::Error err)
{
debugf("%s\n", program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(device).c_str());
return false;
}
m_hash_kernel = cl::Kernel(program, "ethash_hash");
m_search_kernel = cl::Kernel(program, "ethash_search");
// create buffer for dag
m_dag = cl::Buffer(m_context, CL_MEM_READ_ONLY, params.full_size);
// create buffer for header
m_header = cl::Buffer(m_context, CL_MEM_READ_ONLY, 32);
// compute dag on CPU
{
// if this throws then it's because we probably need to subdivide the dag uploads for compatibility
void* dag_ptr = m_queue.enqueueMapBuffer(m_dag, true, m_opencl_1_1 ? CL_MAP_WRITE : CL_MAP_WRITE_INVALIDATE_REGION, 0, params.full_size);
// memcpying 1GB: horrible... really. horrible. but necessary since we can't mmap *and* gpumap.
_fillDAG(dag_ptr);
m_queue.enqueueUnmapMemObject(m_dag, dag_ptr);
}
// create mining buffers
for (unsigned i = 0; i != c_num_buffers; ++i)
{
m_hash_buf[i] = cl::Buffer(m_context, CL_MEM_WRITE_ONLY | (!m_opencl_1_1 ? CL_MEM_HOST_READ_ONLY : 0), 32*c_hash_batch_size);
m_search_buf[i] = cl::Buffer(m_context, CL_MEM_WRITE_ONLY, (c_max_search_results + 1) * sizeof(uint32_t));
}
return true;
}
void ethash_cl_miner::hash(uint8_t* ret, uint8_t const* header, uint64_t nonce, unsigned count)
{
struct pending_batch
{
unsigned base;
unsigned count;
unsigned buf;
};
std::queue<pending_batch> pending;
// update header constant buffer
m_queue.enqueueWriteBuffer(m_header, true, 0, 32, header);
/*
__kernel void ethash_combined_hash(
__global hash32_t* g_hashes,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
uint isolate
)
*/
m_hash_kernel.setArg(1, m_header);
m_hash_kernel.setArg(2, m_dag);
m_hash_kernel.setArg(3, nonce);
m_hash_kernel.setArg(4, ~0u); // have to pass this to stop the compile unrolling the loop
unsigned buf = 0;
for (unsigned i = 0; i < count || !pending.empty(); )
{
// how many this batch
if (i < count)
{
unsigned const this_count = std::min<unsigned>(count - i, c_hash_batch_size);
unsigned const batch_count = std::max<unsigned>(this_count, m_workgroup_size);
// supply output hash buffer to kernel
m_hash_kernel.setArg(0, m_hash_buf[buf]);
// execute it!
m_queue.enqueueNDRangeKernel(
m_hash_kernel,
cl::NullRange,
cl::NDRange(batch_count),
cl::NDRange(m_workgroup_size)
);
m_queue.flush();
pending.push({i, this_count, buf});
i += this_count;
buf = (buf + 1) % c_num_buffers;
}
// read results
if (i == count || pending.size() == c_num_buffers)
{
pending_batch const& batch = pending.front();
// could use pinned host pointer instead, but this path isn't that important.
uint8_t* hashes = (uint8_t*)m_queue.enqueueMapBuffer(m_hash_buf[batch.buf], true, CL_MAP_READ, 0, batch.count * ETHASH_BYTES);
memcpy(ret + batch.base*ETHASH_BYTES, hashes, batch.count*ETHASH_BYTES);
m_queue.enqueueUnmapMemObject(m_hash_buf[batch.buf], hashes);
pending.pop();
}
}
}
void ethash_cl_miner::search(uint8_t const* header, uint64_t target, search_hook& hook)
{
struct pending_batch
{
uint64_t start_nonce;
unsigned buf;
};
std::queue<pending_batch> pending;
static uint32_t const c_zero = 0;
// update header constant buffer
m_queue.enqueueWriteBuffer(m_header, false, 0, 32, header);
for (unsigned i = 0; i != c_num_buffers; ++i)
{
m_queue.enqueueWriteBuffer(m_search_buf[i], false, 0, 4, &c_zero);
}
#if CL_VERSION_1_2 && 0
cl::Event pre_return_event;
if (!m_opencl_1_1)
{
m_queue.enqueueBarrierWithWaitList(NULL, &pre_return_event);
}
else
#endif
{
m_queue.finish();
}
/*
__kernel void ethash_combined_search(
__global hash32_t* g_hashes, // 0
__constant hash32_t const* g_header, // 1
__global hash128_t const* g_dag, // 2
ulong start_nonce, // 3
ulong target, // 4
uint isolate // 5
)
*/
m_search_kernel.setArg(1, m_header);
m_search_kernel.setArg(2, m_dag);
// pass these to stop the compiler unrolling the loops
m_search_kernel.setArg(4, target);
m_search_kernel.setArg(5, ~0u);
unsigned buf = 0;
for (uint64_t start_nonce = 0; ; start_nonce += c_search_batch_size)
{
// supply output buffer to kernel
m_search_kernel.setArg(0, m_search_buf[buf]);
m_search_kernel.setArg(3, start_nonce);
// execute it!
m_queue.enqueueNDRangeKernel(m_search_kernel, cl::NullRange, c_search_batch_size, m_workgroup_size);
pending.push({start_nonce, buf});
buf = (buf + 1) % c_num_buffers;
// read results
if (pending.size() == c_num_buffers)
{
pending_batch const& batch = pending.front();
// could use pinned host pointer instead
uint32_t* results = (uint32_t*)m_queue.enqueueMapBuffer(m_search_buf[batch.buf], true, CL_MAP_READ, 0, (1+c_max_search_results) * sizeof(uint32_t));
unsigned num_found = std::min<unsigned>(results[0], c_max_search_results);
uint64_t nonces[c_max_search_results];
for (unsigned i = 0; i != num_found; ++i)
{
nonces[i] = batch.start_nonce + results[i+1];
}
m_queue.enqueueUnmapMemObject(m_search_buf[batch.buf], results);
bool exit = num_found && hook.found(nonces, num_found);
exit |= hook.searched(batch.start_nonce, c_search_batch_size); // always report searched before exit
if (exit)
break;
// reset search buffer if we're still going
if (num_found)
m_queue.enqueueWriteBuffer(m_search_buf[batch.buf], true, 0, 4, &c_zero);
pending.pop();
}
}
// not safe to return until this is ready
#if CL_VERSION_1_2 && 0
if (!m_opencl_1_1)
{
pre_return_event.wait();
}
#endif
}

43
libethash-cl/ethash_cl_miner.h

@ -0,0 +1,43 @@
#pragma once
#define __CL_ENABLE_EXCEPTIONS
#define CL_USE_DEPRECATED_OPENCL_2_0_APIS
#include "cl.hpp"
#include <time.h>
#include <functional>
#include <libethash/ethash.h>
class ethash_cl_miner
{
public:
struct search_hook
{
// reports progress, return true to abort
virtual bool found(uint64_t const* nonces, uint32_t count) = 0;
virtual bool searched(uint64_t start_nonce, uint32_t count) = 0;
};
public:
ethash_cl_miner();
bool init(ethash_params const& params, std::function<void(void*)> _fillDAG, unsigned workgroup_size = 64);
void finish();
void hash(uint8_t* ret, uint8_t const* header, uint64_t nonce, unsigned count);
void search(uint8_t const* header, uint64_t target, search_hook& hook);
private:
enum { c_max_search_results = 63, c_num_buffers = 2, c_hash_batch_size = 1024, c_search_batch_size = 1024*256 };
ethash_params m_params;
cl::Context m_context;
cl::CommandQueue m_queue;
cl::Kernel m_hash_kernel;
cl::Kernel m_search_kernel;
cl::Buffer m_dag;
cl::Buffer m_header;
cl::Buffer m_hash_buf[c_num_buffers];
cl::Buffer m_search_buf[c_num_buffers];
unsigned m_workgroup_size;
bool m_opencl_1_1;
};

460
libethash-cl/ethash_cl_miner_kernel.cl

@ -0,0 +1,460 @@
// author Tim Hughes <tim@twistedfury.com>
// Tested on Radeon HD 7850
// Hashrate: 15940347 hashes/s
// Bandwidth: 124533 MB/s
// search kernel should fit in <= 84 VGPRS (3 wavefronts)
#define THREADS_PER_HASH (128 / 16)
#define HASHES_PER_LOOP (GROUP_SIZE / THREADS_PER_HASH)
#define FNV_PRIME 0x01000193
__constant uint2 const Keccak_f1600_RC[24] = {
(uint2)(0x00000001, 0x00000000),
(uint2)(0x00008082, 0x00000000),
(uint2)(0x0000808a, 0x80000000),
(uint2)(0x80008000, 0x80000000),
(uint2)(0x0000808b, 0x00000000),
(uint2)(0x80000001, 0x00000000),
(uint2)(0x80008081, 0x80000000),
(uint2)(0x00008009, 0x80000000),
(uint2)(0x0000008a, 0x00000000),
(uint2)(0x00000088, 0x00000000),
(uint2)(0x80008009, 0x00000000),
(uint2)(0x8000000a, 0x00000000),
(uint2)(0x8000808b, 0x00000000),
(uint2)(0x0000008b, 0x80000000),
(uint2)(0x00008089, 0x80000000),
(uint2)(0x00008003, 0x80000000),
(uint2)(0x00008002, 0x80000000),
(uint2)(0x00000080, 0x80000000),
(uint2)(0x0000800a, 0x00000000),
(uint2)(0x8000000a, 0x80000000),
(uint2)(0x80008081, 0x80000000),
(uint2)(0x00008080, 0x80000000),
(uint2)(0x80000001, 0x00000000),
(uint2)(0x80008008, 0x80000000),
};
void keccak_f1600_round(uint2* a, uint r, uint out_size)
{
#if !__ENDIAN_LITTLE__
for (uint i = 0; i != 25; ++i)
a[i] = a[i].yx;
#endif
uint2 b[25];
uint2 t;
// Theta
b[0] = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20];
b[1] = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21];
b[2] = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22];
b[3] = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23];
b[4] = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24];
t = b[4] ^ (uint2)(b[1].x << 1 | b[1].y >> 31, b[1].y << 1 | b[1].x >> 31);
a[0] ^= t;
a[5] ^= t;
a[10] ^= t;
a[15] ^= t;
a[20] ^= t;
t = b[0] ^ (uint2)(b[2].x << 1 | b[2].y >> 31, b[2].y << 1 | b[2].x >> 31);
a[1] ^= t;
a[6] ^= t;
a[11] ^= t;
a[16] ^= t;
a[21] ^= t;
t = b[1] ^ (uint2)(b[3].x << 1 | b[3].y >> 31, b[3].y << 1 | b[3].x >> 31);
a[2] ^= t;
a[7] ^= t;
a[12] ^= t;
a[17] ^= t;
a[22] ^= t;
t = b[2] ^ (uint2)(b[4].x << 1 | b[4].y >> 31, b[4].y << 1 | b[4].x >> 31);
a[3] ^= t;
a[8] ^= t;
a[13] ^= t;
a[18] ^= t;
a[23] ^= t;
t = b[3] ^ (uint2)(b[0].x << 1 | b[0].y >> 31, b[0].y << 1 | b[0].x >> 31);
a[4] ^= t;
a[9] ^= t;
a[14] ^= t;
a[19] ^= t;
a[24] ^= t;
// Rho Pi
b[0] = a[0];
b[10] = (uint2)(a[1].x << 1 | a[1].y >> 31, a[1].y << 1 | a[1].x >> 31);
b[7] = (uint2)(a[10].x << 3 | a[10].y >> 29, a[10].y << 3 | a[10].x >> 29);
b[11] = (uint2)(a[7].x << 6 | a[7].y >> 26, a[7].y << 6 | a[7].x >> 26);
b[17] = (uint2)(a[11].x << 10 | a[11].y >> 22, a[11].y << 10 | a[11].x >> 22);
b[18] = (uint2)(a[17].x << 15 | a[17].y >> 17, a[17].y << 15 | a[17].x >> 17);
b[3] = (uint2)(a[18].x << 21 | a[18].y >> 11, a[18].y << 21 | a[18].x >> 11);
b[5] = (uint2)(a[3].x << 28 | a[3].y >> 4, a[3].y << 28 | a[3].x >> 4);
b[16] = (uint2)(a[5].y << 4 | a[5].x >> 28, a[5].x << 4 | a[5].y >> 28);
b[8] = (uint2)(a[16].y << 13 | a[16].x >> 19, a[16].x << 13 | a[16].y >> 19);
b[21] = (uint2)(a[8].y << 23 | a[8].x >> 9, a[8].x << 23 | a[8].y >> 9);
b[24] = (uint2)(a[21].x << 2 | a[21].y >> 30, a[21].y << 2 | a[21].x >> 30);
b[4] = (uint2)(a[24].x << 14 | a[24].y >> 18, a[24].y << 14 | a[24].x >> 18);
b[15] = (uint2)(a[4].x << 27 | a[4].y >> 5, a[4].y << 27 | a[4].x >> 5);
b[23] = (uint2)(a[15].y << 9 | a[15].x >> 23, a[15].x << 9 | a[15].y >> 23);
b[19] = (uint2)(a[23].y << 24 | a[23].x >> 8, a[23].x << 24 | a[23].y >> 8);
b[13] = (uint2)(a[19].x << 8 | a[19].y >> 24, a[19].y << 8 | a[19].x >> 24);
b[12] = (uint2)(a[13].x << 25 | a[13].y >> 7, a[13].y << 25 | a[13].x >> 7);
b[2] = (uint2)(a[12].y << 11 | a[12].x >> 21, a[12].x << 11 | a[12].y >> 21);
b[20] = (uint2)(a[2].y << 30 | a[2].x >> 2, a[2].x << 30 | a[2].y >> 2);
b[14] = (uint2)(a[20].x << 18 | a[20].y >> 14, a[20].y << 18 | a[20].x >> 14);
b[22] = (uint2)(a[14].y << 7 | a[14].x >> 25, a[14].x << 7 | a[14].y >> 25);
b[9] = (uint2)(a[22].y << 29 | a[22].x >> 3, a[22].x << 29 | a[22].y >> 3);
b[6] = (uint2)(a[9].x << 20 | a[9].y >> 12, a[9].y << 20 | a[9].x >> 12);
b[1] = (uint2)(a[6].y << 12 | a[6].x >> 20, a[6].x << 12 | a[6].y >> 20);
// Chi
a[0] = bitselect(b[0] ^ b[2], b[0], b[1]);
a[1] = bitselect(b[1] ^ b[3], b[1], b[2]);
a[2] = bitselect(b[2] ^ b[4], b[2], b[3]);
a[3] = bitselect(b[3] ^ b[0], b[3], b[4]);
if (out_size >= 4)
{
a[4] = bitselect(b[4] ^ b[1], b[4], b[0]);
a[5] = bitselect(b[5] ^ b[7], b[5], b[6]);
a[6] = bitselect(b[6] ^ b[8], b[6], b[7]);
a[7] = bitselect(b[7] ^ b[9], b[7], b[8]);
a[8] = bitselect(b[8] ^ b[5], b[8], b[9]);
if (out_size >= 8)
{
a[9] = bitselect(b[9] ^ b[6], b[9], b[5]);
a[10] = bitselect(b[10] ^ b[12], b[10], b[11]);
a[11] = bitselect(b[11] ^ b[13], b[11], b[12]);
a[12] = bitselect(b[12] ^ b[14], b[12], b[13]);
a[13] = bitselect(b[13] ^ b[10], b[13], b[14]);
a[14] = bitselect(b[14] ^ b[11], b[14], b[10]);
a[15] = bitselect(b[15] ^ b[17], b[15], b[16]);
a[16] = bitselect(b[16] ^ b[18], b[16], b[17]);
a[17] = bitselect(b[17] ^ b[19], b[17], b[18]);
a[18] = bitselect(b[18] ^ b[15], b[18], b[19]);
a[19] = bitselect(b[19] ^ b[16], b[19], b[15]);
a[20] = bitselect(b[20] ^ b[22], b[20], b[21]);
a[21] = bitselect(b[21] ^ b[23], b[21], b[22]);
a[22] = bitselect(b[22] ^ b[24], b[22], b[23]);
a[23] = bitselect(b[23] ^ b[20], b[23], b[24]);
a[24] = bitselect(b[24] ^ b[21], b[24], b[20]);
}
}
// Iota
a[0] ^= Keccak_f1600_RC[r];
#if !__ENDIAN_LITTLE__
for (uint i = 0; i != 25; ++i)
a[i] = a[i].yx;
#endif
}
void keccak_f1600_no_absorb(ulong* a, uint in_size, uint out_size, uint isolate)
{
for (uint i = in_size; i != 25; ++i)
{
a[i] = 0;
}
#if __ENDIAN_LITTLE__
a[in_size] ^= 0x0000000000000001;
a[24-out_size*2] ^= 0x8000000000000000;
#else
a[in_size] ^= 0x0100000000000000;
a[24-out_size*2] ^= 0x0000000000000080;
#endif
// Originally I unrolled the first and last rounds to interface
// better with surrounding code, however I haven't done this
// without causing the AMD compiler to blow up the VGPR usage.
uint r = 0;
do
{
// This dynamic branch stops the AMD compiler unrolling the loop
// and additionally saves about 33% of the VGPRs, enough to gain another
// wavefront. Ideally we'd get 4 in flight, but 3 is the best I can
// massage out of the compiler. It doesn't really seem to matter how
// much we try and help the compiler save VGPRs because it seems to throw
// that information away, hence the implementation of keccak here
// doesn't bother.
if (isolate)
{
keccak_f1600_round((uint2*)a, r++, 25);
}
}
while (r < 23);
// final round optimised for digest size
keccak_f1600_round((uint2*)a, r++, out_size);
}
#define copy(dst, src, count) for (uint i = 0; i != count; ++i) { (dst)[i] = (src)[i]; }
#define countof(x) (sizeof(x) / sizeof(x[0]))
uint fnv(uint x, uint y)
{
return x * FNV_PRIME ^ y;
}
uint4 fnv4(uint4 x, uint4 y)
{
return x * FNV_PRIME ^ y;
}
uint fnv_reduce(uint4 v)
{
return fnv(fnv(fnv(v.x, v.y), v.z), v.w);
}
typedef union
{
ulong ulongs[32 / sizeof(ulong)];
uint uints[32 / sizeof(uint)];
} hash32_t;
typedef union
{
ulong ulongs[64 / sizeof(ulong)];
uint4 uint4s[64 / sizeof(uint4)];
} hash64_t;
typedef union
{
uint uints[128 / sizeof(uint)];
uint4 uint4s[128 / sizeof(uint4)];
} hash128_t;
hash64_t init_hash(__constant hash32_t const* header, ulong nonce, uint isolate)
{
hash64_t init;
uint const init_size = countof(init.ulongs);
uint const hash_size = countof(header->ulongs);
// sha3_512(header .. nonce)
ulong state[25];
copy(state, header->ulongs, hash_size);
state[hash_size] = nonce;
keccak_f1600_no_absorb(state, hash_size + 1, init_size, isolate);
copy(init.ulongs, state, init_size);
return init;
}
uint inner_loop(uint4 init, uint thread_id, __local uint* share, __global hash128_t const* g_dag, uint isolate)
{
uint4 mix = init;
// share init0
if (thread_id == 0)
*share = mix.x;
barrier(CLK_LOCAL_MEM_FENCE);
uint init0 = *share;
uint a = 0;
do
{
bool update_share = thread_id == (a/4) % THREADS_PER_HASH;
#pragma unroll
for (uint i = 0; i != 4; ++i)
{
if (update_share)
{
uint m[4] = { mix.x, mix.y, mix.z, mix.w };
*share = fnv(init0 ^ (a+i), m[i]) % DAG_SIZE;
}
barrier(CLK_LOCAL_MEM_FENCE);
mix = fnv4(mix, g_dag[*share].uint4s[thread_id]);
}
}
while ((a += 4) != (ACCESSES & isolate));
return fnv_reduce(mix);
}
hash32_t final_hash(hash64_t const* init, hash32_t const* mix, uint isolate)
{
ulong state[25];
hash32_t hash;
uint const hash_size = countof(hash.ulongs);
uint const init_size = countof(init->ulongs);
uint const mix_size = countof(mix->ulongs);
// keccak_256(keccak_512(header..nonce) .. mix);
copy(state, init->ulongs, init_size);
copy(state + init_size, mix->ulongs, mix_size);
keccak_f1600_no_absorb(state, init_size+mix_size, hash_size, isolate);
// copy out
copy(hash.ulongs, state, hash_size);
return hash;
}
hash32_t compute_hash_simple(
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong nonce,
uint isolate
)
{
hash64_t init = init_hash(g_header, nonce, isolate);
hash128_t mix;
for (uint i = 0; i != countof(mix.uint4s); ++i)
{
mix.uint4s[i] = init.uint4s[i % countof(init.uint4s)];
}
uint mix_val = mix.uints[0];
uint init0 = mix.uints[0];
uint a = 0;
do
{
uint pi = fnv(init0 ^ a, mix_val) % DAG_SIZE;
uint n = (a+1) % countof(mix.uints);
#pragma unroll
for (uint i = 0; i != countof(mix.uints); ++i)
{
mix.uints[i] = fnv(mix.uints[i], g_dag[pi].uints[i]);
mix_val = i == n ? mix.uints[i] : mix_val;
}
}
while (++a != (ACCESSES & isolate));
// reduce to output
hash32_t fnv_mix;
for (uint i = 0; i != countof(fnv_mix.uints); ++i)
{
fnv_mix.uints[i] = fnv_reduce(mix.uint4s[i]);
}
return final_hash(&init, &fnv_mix, isolate);
}
typedef union
{
struct
{
hash64_t init;
uint pad; // avoid lds bank conflicts
};
hash32_t mix;
} compute_hash_share;
hash32_t compute_hash(
__local compute_hash_share* share,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong nonce,
uint isolate
)
{
uint const gid = get_global_id(0);
// Compute one init hash per work item.
hash64_t init = init_hash(g_header, nonce, isolate);
// Threads work together in this phase in groups of 8.
uint const thread_id = gid % THREADS_PER_HASH;
uint const hash_id = (gid % GROUP_SIZE) / THREADS_PER_HASH;
hash32_t mix;
uint i = 0;
do
{
// share init with other threads
if (i == thread_id)
share[hash_id].init = init;
barrier(CLK_LOCAL_MEM_FENCE);
uint4 thread_init = share[hash_id].init.uint4s[thread_id % (64 / sizeof(uint4))];
barrier(CLK_LOCAL_MEM_FENCE);
uint thread_mix = inner_loop(thread_init, thread_id, share[hash_id].mix.uints, g_dag, isolate);
share[hash_id].mix.uints[thread_id] = thread_mix;
barrier(CLK_LOCAL_MEM_FENCE);
if (i == thread_id)
mix = share[hash_id].mix;
barrier(CLK_LOCAL_MEM_FENCE);
}
while (++i != (THREADS_PER_HASH & isolate));
return final_hash(&init, &mix, isolate);
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_hash_simple(
__global hash32_t* g_hashes,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
uint isolate
)
{
uint const gid = get_global_id(0);
g_hashes[gid] = compute_hash_simple(g_header, g_dag, start_nonce + gid, isolate);
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_search_simple(
__global volatile uint* restrict g_output,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
ulong target,
uint isolate
)
{
uint const gid = get_global_id(0);
hash32_t hash = compute_hash_simple(g_header, g_dag, start_nonce + gid, isolate);
if (as_ulong(as_uchar8(hash.ulongs[0]).s76543210) < target)
{
uint slot = min(MAX_OUTPUTS, atomic_inc(&g_output[0]) + 1);
g_output[slot] = gid;
}
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_hash(
__global hash32_t* g_hashes,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
uint isolate
)
{
__local compute_hash_share share[HASHES_PER_LOOP];
uint const gid = get_global_id(0);
g_hashes[gid] = compute_hash(share, g_header, g_dag, start_nonce + gid, isolate);
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_search(
__global volatile uint* restrict g_output,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
ulong target,
uint isolate
)
{
__local compute_hash_share share[HASHES_PER_LOOP];
uint const gid = get_global_id(0);
hash32_t hash = compute_hash(share, g_header, g_dag, start_nonce + gid, isolate);
if (as_ulong(as_uchar8(hash.ulongs[0]).s76543210) < target)
{
uint slot = min(MAX_OUTPUTS, atomic_inc(&g_output[0]) + 1);
g_output[slot] = gid;
}
}
Loading…
Cancel
Save