import re # Number of spaces at the beginning of a line def spaces(ln): spaces = 0 while spaces < len(ln) and ln[spaces] == ' ': spaces += 1 return spaces # Main parse function def parse(document): return parse_lines(document.split('\n')) # Parse the statement-level structure, including if and while statements def parse_lines(lns): o = [] i = 0 while i < len(lns): main = lns[i] # Skip empty lines if len(main.strip()) == 0: i += 1 continue if spaces(main) > 0: raise Exception("Line "+str(i)+" indented too much!") # Grab the child block of an if statement start_child_block = i+1 indent = 99999999 i += 1 while i < len(lns): sp = spaces(lns[i]) if sp == 0: break indent = min(sp,indent) i += 1 child_block = map(lambda x:x[indent:],lns[start_child_block:i]) # Calls parse_line to parse the individual line out = parse_line(main) # Include the child block into the parsed expression if out[0] in ['if', 'else', 'while', 'else if']: if len(child_block) == 0: raise Exception("If/else/while statement must have sub-clause! (%d)" % i) else: out.append(parse_lines(child_block)) else: if len(child_block) > 0: raise Exception("Not an if/else/while statement, can't have sub-clause! (%d)" % i) # This is somewhat complicated. Essentially, it converts something like # "if c1 then s1 elif c2 then s2 elif c3 then s3 else s4" (with appropriate # indenting) to [ if c1 s1 [ if c2 s2 [ if c3 s3 s4 ] ] ] if out[0] == 'else if': if len(o) == 0: raise Exception("Cannot start with else if! (%d)" % i) u = o[-1] while len(u) == 4: u = u[-1] u.append(['if'] + out[1:]) elif out[0] == 'else': if len(o) == 0: raise Exception("Cannot start with else! (%d)" % i) u = o[-1] while len(u) == 4: u = u[-1] u.append(out[1]) else: # Normal case: just add the parsed line to the output o.append(out) return o[0] if len(o) == 1 else ['seq'] + o # Tokens contain one or more chars of the same type, with a few exceptions def chartype(c): if c in 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.': return 'alphanum' elif c in '\t ': return 'space' elif c in '()[]': return 'brack' elif c == '"': return 'dquote' elif c == "'": return 'squote' else: return 'symb' # Converts something like "b[4] = x+2 > y*-3" to # [ 'b', '[', '4', ']', '=', 'x', '+', '2', '>', 'y', '*', '-', '3' ] def tokenize(ln): tp = 'space' i = 0 o = [] global cur cur = '' # Comments if '//' in ln: ln = ln[:ln.find('//')] # Finish a token and start a new one def nxt(): global cur if len(cur) >= 2 and cur[-1] == '-': o.extend([cur[:-1],'-']) elif len(cur.strip()) >= 1: o.append(cur) cur = '' # Main loop while i < len(ln): c = chartype(ln[i]) # Inside a string if tp == 'squote' or tp == "dquote": if c == tp: cur += ln[i] nxt() i += 1 tp = 'space' elif ln[i:i+2] == '\\x': cur += ln[i+2:i+4].decode('hex') i += 4 elif ln[i:i+2] == '\\n': cur += '\x0a' i += 2 elif ln[i] == '\\': cur += ln[i+1] i += 2 else: cur += ln[i] i += 1 # Not inside a string else: if c == 'brack' or tp == 'brack': nxt() elif c == 'space': nxt() elif c != 'space' and tp == 'space': nxt() elif c == 'symb' and tp != 'symb': nxt() elif c == 'alphanum' and tp == 'symb': nxt() elif c == 'squote' or c == "dquote": nxt() cur += ln[i] tp = c i += 1 nxt() if o[-1] in [':',':\n','\n']: o.pop() if tp in ['squote','dquote']: raise Exception("Unclosed string: "+ln) return o # This is the part where we turn a token list into an abstract syntax tree precedence = { '^': 1, '*': 2, '/': 3, '%': 4, '#/': 2, '#%': 2, '+': 3, '-': 3, '<': 4, '<=': 4, '>': 4, '>=': 4, '==': 5, 'and': 6, '&&': 6, 'or': 7, '||': 7, '!': 0 } def toktype(token): if token is None: return None elif token in ['(','[']: return 'left_paren' elif token in [')',']']: return 'right_paren' elif token == ',': return 'comma' elif token == ':': return 'colon' elif token in ['!']: return 'unary_operation' elif not isinstance(token,str): return 'compound' elif token in precedence: return 'binary_operation' elif re.match('^[0-9a-z\-\.]*$',token): return 'alphanum' elif token[0] in ['"',"'"] and token[0] == token[-1]: return 'alphanum' else: raise Exception("Invalid token: "+token) # https://en.wikipedia.org/wiki/Shunting-yard_algorithm # # The algorithm works by maintaining three stacks: iq, stack, oq. Initially, # the tokens are placed in order on the iq. Then, one by one, the tokens are # processed. Values are moved immediately to the output queue. Operators are # pushed onto the stack, but if an operator comes along with lower precendence # then all operators on the stack with higher precedence are applied first. # For example: # iq = 2 + 3 * 5 + 7, stack = \, oq = \ # iq = + 3 * 5 + 7, stack = \, oq = 2 # iq = 3 * 5 + 7, stack = +, oq = 2 # iq = * 5 + 7, stack = +, oq = 2 3 # iq = 5 + 7, stack = + *, oq = 2 3 (since * > + in precedence) # iq = + 7, stack = + *, oq = 2 3 5 # iq = 7, stack = + +, oq = 2 [* 3 5] (since + > * in precedence) # iq = \, stack = + +, oq = 2 [* 3 5] 7 # iq = \, stack = +, oq = 2 [+ [* 3 5] 7] # iq = \, stack = \, oq = [+ 2 [+ [* 3 5] 7] ] # # Functions, where function arguments begin with a left bracket preceded by # the function name, are separated by commas, and end with a right bracket, # are also included in this algorithm, though in a different way def shunting_yard(tokens): iq = [x for x in tokens] oq = [] stack = [] prev,tok = None,None # The normal Shunting-Yard algorithm simply converts expressions into # reverse polish notation. Here, we try to be slightly more ambitious # and build up the AST directly on the output queue # eg. say oq = [ 2, 5, 3 ] and we add "+" then "*" # we get first [ 2, [ +, 5, 3 ] ] then [ [ *, 2, [ +, 5, 3 ] ] ] def popstack(stack,oq): tok = stack.pop() typ = toktype(tok) if typ == 'binary_operation': a,b = oq.pop(), oq.pop() oq.append([ tok, b, a]) elif typ == 'unary_operation': a = oq.pop() oq.append([ tok, a ]) elif typ == 'right_paren': args = [] while toktype(oq[-1]) != 'left_paren': args.insert(0,oq.pop()) oq.pop() if tok == ']' and args[0] != 'id': oq.append(['access'] + args) elif tok == ']': oq.append(['array_lit'] + args[1:]) elif tok == ')' and len(args) and args[0] != 'id': oq.append(args) else: oq.append(args[1]) # The main loop while len(iq) > 0: prev = tok tok = iq.pop(0) typ = toktype(tok) if typ == 'alphanum': oq.append(tok) elif typ == 'left_paren': # Handle cases like 3 * (2 + 5) by using 'id' as a default function # name if toktype(prev) != 'alphanum' and toktype(prev) != 'rparen': oq.append('id') # Say the statement is "... f(45...". At the start, we would have f # as the last item on the oq. So we move it onto the stack, put the # leftparen on the oq, and move f back to the stack, so we have ( f # as the last two items on the oq. We also put the leftparen on the # stack so we have a separator on both the stack and the oq stack.append(oq.pop()) oq.append(tok) oq.append(stack.pop()) stack.append(tok) elif typ == 'right_paren': # eg. f(27, 3 * 5 + 4). First, we finish evaluating all the # arithmetic inside the last argument. Then, we run popstack # to coalesce all of the function arguments sitting on the # oq into a single list while len(stack) and toktype(stack[-1]) != 'left_paren': popstack(stack,oq) if len(stack): stack.pop() stack.append(tok) popstack(stack,oq) elif typ == 'unary_operation' or typ == 'binary_operation': # -5 -> 0 - 5 if tok == '-' and toktype(prev) not in ['alphanum', 'right_paren']: oq.append('0') # Handle BEDMAS operator precedence prec = precedence[tok] while len(stack) and toktype(stack[-1]) == 'binary_operation' and precedence[stack[-1]] < prec: popstack(stack,oq) stack.append(tok) elif typ == 'comma': # Finish evaluating all arithmetic before the comma while len(stack) and toktype(stack[-1]) != 'left_paren': popstack(stack,oq) elif typ == 'colon': # Colon is like a comma except it stays in the argument list while len(stack) and toktype(stack[-1]) != 'right_paren': popstack(stack,oq) oq.append(tok) while len(stack): popstack(stack,oq) if len(oq) == 1: return oq[0] else: raise Exception("Wrong number of items left on stack: "+str(oq)) def parse_line(ln): tokens = tokenize(ln.strip()) if tokens[0] == 'if' or tokens[0] == 'while': return [ tokens[0], shunting_yard(tokens[1:]) ] elif len(tokens) >= 2 and tokens[0] == 'else' and tokens[1] == 'if': return [ 'else if', shunting_yard(tokens[2:]) ] elif len(tokens) >= 1 and tokens[0] == 'elif': return [ 'else if', shunting_yard(tokens[1:]) ] elif len(tokens) == 1 and tokens[0] == 'else': return [ 'else' ] elif '=' in tokens: eqplace = tokens.index('=') return [ 'set', shunting_yard(tokens[:eqplace]), shunting_yard(tokens[eqplace+1:]) ] else: return shunting_yard(tokens)