#include "Arith256.h" #include #include #include "preprocessor/llvm_includes_start.h" #include #include #include "preprocessor/llvm_includes_end.h" #include "Type.h" #include "Endianness.h" #include "Utils.h" namespace dev { namespace eth { namespace jit { Arith256::Arith256(llvm::IRBuilder<>& _builder) : CompilerHelper(_builder) {} void Arith256::debug(llvm::Value* _value, char _c) { if (!m_debug) { llvm::Type* argTypes[] = {Type::Word, m_builder.getInt8Ty()}; m_debug = llvm::Function::Create(llvm::FunctionType::get(Type::Void, argTypes, false), llvm::Function::ExternalLinkage, "debug", getModule()); } createCall(m_debug, {m_builder.CreateZExtOrTrunc(_value, Type::Word), m_builder.getInt8(_c)}); } llvm::Function* Arith256::getMulFunc(llvm::Module& _module) { static const auto funcName = "evm.mul.i256"; if (auto func = _module.getFunction(funcName)) return func; llvm::Type* argTypes[] = {Type::Word, Type::Word}; auto func = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, funcName, &_module); func->setDoesNotThrow(); func->setDoesNotAccessMemory(); auto x = &func->getArgumentList().front(); x->setName("x"); auto y = x->getNextNode(); y->setName("y"); auto bb = llvm::BasicBlock::Create(_module.getContext(), {}, func); auto builder = llvm::IRBuilder<>{bb}; auto i64 = Type::Size; auto i128 = builder.getIntNTy(128); auto i256 = Type::Word; auto c64 = Constant::get(64); auto c128 = Constant::get(128); auto c192 = Constant::get(192); auto x_lo = builder.CreateTrunc(x, i64, "x.lo"); auto y_lo = builder.CreateTrunc(y, i64, "y.lo"); auto x_mi = builder.CreateTrunc(builder.CreateLShr(x, c64), i64); auto y_mi = builder.CreateTrunc(builder.CreateLShr(y, c64), i64); auto x_hi = builder.CreateTrunc(builder.CreateLShr(x, c128), i128); auto y_hi = builder.CreateTrunc(builder.CreateLShr(y, c128), i128); auto t1 = builder.CreateMul(builder.CreateZExt(x_lo, i128), builder.CreateZExt(y_lo, i128)); auto t2 = builder.CreateMul(builder.CreateZExt(x_lo, i128), builder.CreateZExt(y_mi, i128)); auto t3 = builder.CreateMul(builder.CreateZExt(x_lo, i128), y_hi); auto t4 = builder.CreateMul(builder.CreateZExt(x_mi, i128), builder.CreateZExt(y_lo, i128)); auto t5 = builder.CreateMul(builder.CreateZExt(x_mi, i128), builder.CreateZExt(y_mi, i128)); auto t6 = builder.CreateMul(builder.CreateZExt(x_mi, i128), y_hi); auto t7 = builder.CreateMul(x_hi, builder.CreateZExt(y_lo, i128)); auto t8 = builder.CreateMul(x_hi, builder.CreateZExt(y_mi, i128)); auto p = builder.CreateZExt(t1, i256); p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t2, i256), c64)); p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t3, i256), c128)); p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t4, i256), c64)); p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t5, i256), c128)); p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t6, i256), c192)); p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t7, i256), c128)); p = builder.CreateAdd(p, builder.CreateShl(builder.CreateZExt(t8, i256), c192)); builder.CreateRet(p); return func; } llvm::Function* Arith256::getUDivRem256Func(llvm::Module& _module) { static const auto funcName = "evm.udivrem.i256"; if (auto func = _module.getFunction(funcName)) return func; auto type = Type::Word; // Based of "Improved shift divisor algorithm" from "Software Integer Division" by Microsoft Research // The following algorithm also handles divisor of value 0 returning 0 for both quotient and reminder llvm::Type* argTypes[] = {type, type}; auto retType = llvm::VectorType::get(type, 2); auto func = llvm::Function::Create(llvm::FunctionType::get(retType, argTypes, false), llvm::Function::PrivateLinkage, funcName, &_module); func->setDoesNotThrow(); func->setDoesNotAccessMemory(); auto zero = llvm::ConstantInt::get(type, 0); auto one = llvm::ConstantInt::get(type, 1); auto x = &func->getArgumentList().front(); x->setName("x"); auto yArg = x->getNextNode(); yArg->setName("y"); auto entryBB = llvm::BasicBlock::Create(_module.getContext(), "Entry", func); auto mainBB = llvm::BasicBlock::Create(_module.getContext(), "Main", func); auto loopBB = llvm::BasicBlock::Create(_module.getContext(), "Loop", func); auto continueBB = llvm::BasicBlock::Create(_module.getContext(), "Continue", func); auto returnBB = llvm::BasicBlock::Create(_module.getContext(), "Return", func); auto builder = llvm::IRBuilder<>{entryBB}; auto yNonZero = builder.CreateICmpNE(yArg, zero); auto yLEx = builder.CreateICmpULE(yArg, x); auto r0 = builder.CreateSelect(yNonZero, x, zero, "r0"); builder.CreateCondBr(builder.CreateAnd(yLEx, yNonZero), mainBB, returnBB); builder.SetInsertPoint(mainBB); auto ctlzIntr = llvm::Intrinsic::getDeclaration(&_module, llvm::Intrinsic::ctlz, type); // both y and r are non-zero auto yLz = builder.CreateCall2(ctlzIntr, yArg, builder.getInt1(true), "y.lz"); auto rLz = builder.CreateCall2(ctlzIntr, r0, builder.getInt1(true), "r.lz"); auto i0 = builder.CreateNUWSub(yLz, rLz, "i0"); auto y0 = builder.CreateShl(yArg, i0); builder.CreateBr(loopBB); builder.SetInsertPoint(loopBB); auto yPhi = builder.CreatePHI(type, 2, "y.phi"); auto rPhi = builder.CreatePHI(type, 2, "r.phi"); auto iPhi = builder.CreatePHI(type, 2, "i.phi"); auto qPhi = builder.CreatePHI(type, 2, "q.phi"); auto rUpdate = builder.CreateNUWSub(rPhi, yPhi); auto qUpdate = builder.CreateOr(qPhi, one); // q += 1, q lowest bit is 0 auto rGEy = builder.CreateICmpUGE(rPhi, yPhi); auto r1 = builder.CreateSelect(rGEy, rUpdate, rPhi, "r1"); auto q1 = builder.CreateSelect(rGEy, qUpdate, qPhi, "q"); auto iZero = builder.CreateICmpEQ(iPhi, zero); builder.CreateCondBr(iZero, returnBB, continueBB); builder.SetInsertPoint(continueBB); auto i2 = builder.CreateNUWSub(iPhi, one); auto q2 = builder.CreateShl(q1, one); auto y2 = builder.CreateLShr(yPhi, one); builder.CreateBr(loopBB); yPhi->addIncoming(y0, mainBB); yPhi->addIncoming(y2, continueBB); rPhi->addIncoming(r0, mainBB); rPhi->addIncoming(r1, continueBB); iPhi->addIncoming(i0, mainBB); iPhi->addIncoming(i2, continueBB); qPhi->addIncoming(zero, mainBB); qPhi->addIncoming(q2, continueBB); builder.SetInsertPoint(returnBB); auto qRet = builder.CreatePHI(type, 2, "q.ret"); qRet->addIncoming(zero, entryBB); qRet->addIncoming(q1, loopBB); auto rRet = builder.CreatePHI(type, 2, "r.ret"); rRet->addIncoming(r0, entryBB); rRet->addIncoming(r1, loopBB); auto ret = builder.CreateInsertElement(llvm::UndefValue::get(retType), qRet, uint64_t(0), "ret0"); ret = builder.CreateInsertElement(ret, rRet, 1, "ret"); builder.CreateRet(ret); return func; } llvm::Function* Arith256::getUDiv256Func(llvm::Module& _module) { static const auto funcName = "evm.udiv.i256"; if (auto func = _module.getFunction(funcName)) return func; auto udivremFunc = getUDivRem256Func(_module); auto func = llvm::Function::Create(llvm::FunctionType::get(Type::Word, {Type::Word, Type::Word}, false), llvm::Function::PrivateLinkage, funcName, &_module); func->setDoesNotThrow(); func->setDoesNotAccessMemory(); auto x = &func->getArgumentList().front(); x->setName("x"); auto y = x->getNextNode(); y->setName("y"); auto bb = llvm::BasicBlock::Create(_module.getContext(), {}, func); auto builder = llvm::IRBuilder<>{bb}; auto udivrem = builder.CreateCall(udivremFunc, {x, y}); auto udiv = builder.CreateExtractElement(udivrem, uint64_t(0)); builder.CreateRet(udiv); return func; } llvm::Function* Arith256::getMul512Func() { auto& func = m_mul512; if (!func) { auto i512 = m_builder.getIntNTy(512); llvm::Type* argTypes[] = {Type::Word, Type::Word}; func = llvm::Function::Create(llvm::FunctionType::get(i512, argTypes, false), llvm::Function::PrivateLinkage, "mul512", getModule()); func->setDoesNotThrow(); func->setDoesNotAccessMemory(); auto x = &func->getArgumentList().front(); x->setName("x"); auto y = x->getNextNode(); y->setName("y"); InsertPointGuard guard{m_builder}; auto bb = llvm::BasicBlock::Create(m_builder.getContext(), {}, func); m_builder.SetInsertPoint(bb); auto i128 = m_builder.getIntNTy(128); auto i256 = Type::Word; auto x_lo = m_builder.CreateZExt(m_builder.CreateTrunc(x, i128, "x.lo"), i256); auto y_lo = m_builder.CreateZExt(m_builder.CreateTrunc(y, i128, "y.lo"), i256); auto x_hi = m_builder.CreateZExt(m_builder.CreateTrunc(m_builder.CreateLShr(x, Constant::get(128)), i128, "x.hi"), i256); auto y_hi = m_builder.CreateZExt(m_builder.CreateTrunc(m_builder.CreateLShr(y, Constant::get(128)), i128, "y.hi"), i256); auto mul256Func = getMulFunc(*getModule()); auto t1 = createCall(mul256Func, {x_lo, y_lo}); auto t2 = createCall(mul256Func, {x_lo, y_hi}); auto t3 = createCall(mul256Func, {x_hi, y_lo}); auto t4 = createCall(mul256Func, {x_hi, y_hi}); auto p = m_builder.CreateZExt(t1, i512); p = m_builder.CreateAdd(p, m_builder.CreateShl(m_builder.CreateZExt(t2, i512), m_builder.getIntN(512, 128))); p = m_builder.CreateAdd(p, m_builder.CreateShl(m_builder.CreateZExt(t3, i512), m_builder.getIntN(512, 128))); p = m_builder.CreateAdd(p, m_builder.CreateShl(m_builder.CreateZExt(t4, i512), m_builder.getIntN(512, 256))); m_builder.CreateRet(p); } return func; } llvm::Function* Arith256::getDivFunc(llvm::Type* _type) { auto& func = _type == Type::Word ? m_div : m_div512; if (!func) { // Based of "Improved shift divisor algorithm" from "Software Integer Division" by Microsoft Research // The following algorithm also handles divisor of value 0 returning 0 for both quotient and reminder llvm::Type* argTypes[] = {_type, _type}; auto retType = llvm::VectorType::get(_type, 2); auto funcName = _type == Type::Word ? "div" : "div512"; func = llvm::Function::Create(llvm::FunctionType::get(retType, argTypes, false), llvm::Function::PrivateLinkage, funcName, getModule()); func->setDoesNotThrow(); func->setDoesNotAccessMemory(); auto zero = llvm::ConstantInt::get(_type, 0); auto one = llvm::ConstantInt::get(_type, 1); auto x = &func->getArgumentList().front(); x->setName("x"); auto yArg = x->getNextNode(); yArg->setName("y"); InsertPointGuard guard{m_builder}; auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), "Entry", func); auto mainBB = llvm::BasicBlock::Create(m_builder.getContext(), "Main", func); auto loopBB = llvm::BasicBlock::Create(m_builder.getContext(), "Loop", func); auto continueBB = llvm::BasicBlock::Create(m_builder.getContext(), "Continue", func); auto returnBB = llvm::BasicBlock::Create(m_builder.getContext(), "Return", func); m_builder.SetInsertPoint(entryBB); auto yNonZero = m_builder.CreateICmpNE(yArg, zero); auto yLEx = m_builder.CreateICmpULE(yArg, x); auto r0 = m_builder.CreateSelect(yNonZero, x, zero, "r0"); m_builder.CreateCondBr(m_builder.CreateAnd(yLEx, yNonZero), mainBB, returnBB); m_builder.SetInsertPoint(mainBB); auto ctlzIntr = llvm::Intrinsic::getDeclaration(getModule(), llvm::Intrinsic::ctlz, _type); // both y and r are non-zero auto yLz = m_builder.CreateCall2(ctlzIntr, yArg, m_builder.getInt1(true), "y.lz"); auto rLz = m_builder.CreateCall2(ctlzIntr, r0, m_builder.getInt1(true), "r.lz"); auto i0 = m_builder.CreateNUWSub(yLz, rLz, "i0"); auto y0 = m_builder.CreateShl(yArg, i0); m_builder.CreateBr(loopBB); m_builder.SetInsertPoint(loopBB); auto yPhi = m_builder.CreatePHI(_type, 2, "y.phi"); auto rPhi = m_builder.CreatePHI(_type, 2, "r.phi"); auto iPhi = m_builder.CreatePHI(_type, 2, "i.phi"); auto qPhi = m_builder.CreatePHI(_type, 2, "q.phi"); auto rUpdate = m_builder.CreateNUWSub(rPhi, yPhi); auto qUpdate = m_builder.CreateOr(qPhi, one); // q += 1, q lowest bit is 0 auto rGEy = m_builder.CreateICmpUGE(rPhi, yPhi); auto r1 = m_builder.CreateSelect(rGEy, rUpdate, rPhi, "r1"); auto q1 = m_builder.CreateSelect(rGEy, qUpdate, qPhi, "q"); auto iZero = m_builder.CreateICmpEQ(iPhi, zero); m_builder.CreateCondBr(iZero, returnBB, continueBB); m_builder.SetInsertPoint(continueBB); auto i2 = m_builder.CreateNUWSub(iPhi, one); auto q2 = m_builder.CreateShl(q1, one); auto y2 = m_builder.CreateLShr(yPhi, one); m_builder.CreateBr(loopBB); yPhi->addIncoming(y0, mainBB); yPhi->addIncoming(y2, continueBB); rPhi->addIncoming(r0, mainBB); rPhi->addIncoming(r1, continueBB); iPhi->addIncoming(i0, mainBB); iPhi->addIncoming(i2, continueBB); qPhi->addIncoming(zero, mainBB); qPhi->addIncoming(q2, continueBB); m_builder.SetInsertPoint(returnBB); auto qRet = m_builder.CreatePHI(_type, 2, "q.ret"); qRet->addIncoming(zero, entryBB); qRet->addIncoming(q1, loopBB); auto rRet = m_builder.CreatePHI(_type, 2, "r.ret"); rRet->addIncoming(r0, entryBB); rRet->addIncoming(r1, loopBB); auto ret = m_builder.CreateInsertElement(llvm::UndefValue::get(retType), qRet, uint64_t(0), "ret0"); ret = m_builder.CreateInsertElement(ret, rRet, 1, "ret"); m_builder.CreateRet(ret); } return func; } llvm::Function* Arith256::getExpFunc() { if (!m_exp) { llvm::Type* argTypes[] = {Type::Word, Type::Word}; m_exp = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, "exp", getModule()); m_exp->setDoesNotThrow(); m_exp->setDoesNotAccessMemory(); auto base = &m_exp->getArgumentList().front(); base->setName("base"); auto exponent = base->getNextNode(); exponent->setName("exponent"); InsertPointGuard guard{m_builder}; // while (e != 0) { // if (e % 2 == 1) // r *= b; // b *= b; // e /= 2; // } auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), "Entry", m_exp); auto headerBB = llvm::BasicBlock::Create(m_builder.getContext(), "LoopHeader", m_exp); auto bodyBB = llvm::BasicBlock::Create(m_builder.getContext(), "LoopBody", m_exp); auto updateBB = llvm::BasicBlock::Create(m_builder.getContext(), "ResultUpdate", m_exp); auto continueBB = llvm::BasicBlock::Create(m_builder.getContext(), "Continue", m_exp); auto returnBB = llvm::BasicBlock::Create(m_builder.getContext(), "Return", m_exp); m_builder.SetInsertPoint(entryBB); m_builder.CreateBr(headerBB); m_builder.SetInsertPoint(headerBB); auto r = m_builder.CreatePHI(Type::Word, 2, "r"); auto b = m_builder.CreatePHI(Type::Word, 2, "b"); auto e = m_builder.CreatePHI(Type::Word, 2, "e"); auto eNonZero = m_builder.CreateICmpNE(e, Constant::get(0), "e.nonzero"); m_builder.CreateCondBr(eNonZero, bodyBB, returnBB); m_builder.SetInsertPoint(bodyBB); auto eOdd = m_builder.CreateICmpNE(m_builder.CreateAnd(e, Constant::get(1)), Constant::get(0), "e.isodd"); m_builder.CreateCondBr(eOdd, updateBB, continueBB); m_builder.SetInsertPoint(updateBB); auto mul256Func = getMulFunc(*getModule()); auto r0 = createCall(mul256Func, {r, b}); m_builder.CreateBr(continueBB); m_builder.SetInsertPoint(continueBB); auto r1 = m_builder.CreatePHI(Type::Word, 2, "r1"); r1->addIncoming(r, bodyBB); r1->addIncoming(r0, updateBB); auto b1 = createCall(mul256Func, {b, b}); auto e1 = m_builder.CreateLShr(e, Constant::get(1), "e1"); m_builder.CreateBr(headerBB); r->addIncoming(Constant::get(1), entryBB); r->addIncoming(r1, continueBB); b->addIncoming(base, entryBB); b->addIncoming(b1, continueBB); e->addIncoming(exponent, entryBB); e->addIncoming(e1, continueBB); m_builder.SetInsertPoint(returnBB); m_builder.CreateRet(r); } return m_exp; } llvm::Function* Arith256::getAddModFunc() { if (!m_addmod) { auto i512Ty = m_builder.getIntNTy(512); llvm::Type* argTypes[] = {Type::Word, Type::Word, Type::Word}; m_addmod = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, "addmod", getModule()); m_addmod->setDoesNotThrow(); m_addmod->setDoesNotAccessMemory(); auto x = &m_addmod->getArgumentList().front(); x->setName("x"); auto y = x->getNextNode(); y->setName("y"); auto mod = y->getNextNode(); mod->setName("m"); InsertPointGuard guard{m_builder}; auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), {}, m_addmod); m_builder.SetInsertPoint(entryBB); auto x512 = m_builder.CreateZExt(x, i512Ty, "x512"); auto y512 = m_builder.CreateZExt(y, i512Ty, "y512"); auto m512 = m_builder.CreateZExt(mod, i512Ty, "m512"); auto s = m_builder.CreateAdd(x512, y512, "s"); auto d = createCall(getDivFunc(i512Ty), {s, m512}); auto r = m_builder.CreateExtractElement(d, 1, "r"); m_builder.CreateRet(m_builder.CreateTrunc(r, Type::Word)); } return m_addmod; } llvm::Function* Arith256::getMulModFunc() { if (!m_mulmod) { llvm::Type* argTypes[] = {Type::Word, Type::Word, Type::Word}; m_mulmod = llvm::Function::Create(llvm::FunctionType::get(Type::Word, argTypes, false), llvm::Function::PrivateLinkage, "mulmod", getModule()); m_mulmod->setDoesNotThrow(); m_mulmod->setDoesNotAccessMemory(); auto i512Ty = m_builder.getIntNTy(512); auto x = &m_mulmod->getArgumentList().front(); x->setName("x"); auto y = x->getNextNode(); y->setName("y"); auto mod = y->getNextNode(); mod->setName("mod"); InsertPointGuard guard{m_builder}; auto entryBB = llvm::BasicBlock::Create(m_builder.getContext(), {}, m_mulmod); m_builder.SetInsertPoint(entryBB); auto p = createCall(getMul512Func(), {x, y}); auto m = m_builder.CreateZExt(mod, i512Ty, "m"); auto d = createCall(getDivFunc(i512Ty), {p, m}); auto r = m_builder.CreateExtractElement(d, 1, "r"); m_builder.CreateRet(m_builder.CreateTrunc(r, Type::Word)); } return m_mulmod; } std::pair Arith256::div(llvm::Value* _arg1, llvm::Value* _arg2) { if (auto c1 = llvm::dyn_cast(_arg1)) { if (auto c2 = llvm::dyn_cast(_arg2)) { if (!c2->getValue()) return std::make_pair(Constant::get(0), Constant::get(0)); auto div = Constant::get(c1->getValue().udiv(c2->getValue())); auto mod = Constant::get(c1->getValue().urem(c2->getValue())); return std::make_pair(div, mod); } } auto r = createCall(getDivFunc(Type::Word), {_arg1, _arg2}); auto div = m_builder.CreateExtractElement(r, uint64_t(0), "div"); auto mod = m_builder.CreateExtractElement(r, 1, "mod"); return std::make_pair(div, mod); } std::pair Arith256::sdiv(llvm::Value* _x, llvm::Value* _y) { if (auto c1 = llvm::dyn_cast(_x)) { if (auto c2 = llvm::dyn_cast(_y)) { if (!c2->getValue()) return std::make_pair(Constant::get(0), Constant::get(0)); auto div = Constant::get(c1->getValue().sdiv(c2->getValue())); auto mod = Constant::get(c1->getValue().srem(c2->getValue())); return std::make_pair(div, mod); } } auto xIsNeg = m_builder.CreateICmpSLT(_x, Constant::get(0)); auto xNeg = m_builder.CreateSub(Constant::get(0), _x); auto xAbs = m_builder.CreateSelect(xIsNeg, xNeg, _x); auto yIsNeg = m_builder.CreateICmpSLT(_y, Constant::get(0)); auto yNeg = m_builder.CreateSub(Constant::get(0), _y); auto yAbs = m_builder.CreateSelect(yIsNeg, yNeg, _y); auto res = div(xAbs, yAbs); // the reminder has the same sign as dividend auto rNeg = m_builder.CreateSub(Constant::get(0), res.second); res.second = m_builder.CreateSelect(xIsNeg, rNeg, res.second); auto qNeg = m_builder.CreateSub(Constant::get(0), res.first); auto xyOpposite = m_builder.CreateXor(xIsNeg, yIsNeg); res.first = m_builder.CreateSelect(xyOpposite, qNeg, res.first); return res; } llvm::Value* Arith256::exp(llvm::Value* _arg1, llvm::Value* _arg2) { // while (e != 0) { // if (e % 2 == 1) // r *= b; // b *= b; // e /= 2; // } if (auto c1 = llvm::dyn_cast(_arg1)) { if (auto c2 = llvm::dyn_cast(_arg2)) { auto b = c1->getValue(); auto e = c2->getValue(); auto r = llvm::APInt{256, 1}; while (e != 0) { if (e[0]) r *= b; b *= b; e = e.lshr(1); } return Constant::get(r); } } return createCall(getExpFunc(), {_arg1, _arg2}); } llvm::Value* Arith256::addmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3) { if (auto c1 = llvm::dyn_cast(_arg1)) { if (auto c2 = llvm::dyn_cast(_arg2)) { if (auto c3 = llvm::dyn_cast(_arg3)) { if (!c3->getValue()) return Constant::get(0); auto s = c1->getValue().zext(256+64) + c2->getValue().zext(256+64); auto r = s.urem(c3->getValue().zext(256+64)).trunc(256); return Constant::get(r); } } } return createCall(getAddModFunc(), {_arg1, _arg2, _arg3}); } llvm::Value* Arith256::mulmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3) { if (auto c1 = llvm::dyn_cast(_arg1)) { if (auto c2 = llvm::dyn_cast(_arg2)) { if (auto c3 = llvm::dyn_cast(_arg3)) { if (!c3->getValue()) return Constant::get(0); auto p = c1->getValue().zext(512) * c2->getValue().zext(512); auto r = p.urem(c3->getValue().zext(512)).trunc(256); return Constant::get(r); } } } return createCall(getMulModFunc(), {_arg1, _arg2, _arg3}); } } } } extern "C" { EXPORT void debug(uint64_t a, uint64_t b, uint64_t c, uint64_t d, char z) { DLOG(JIT) << "DEBUG " << std::dec << z << ": " //<< d << c << b << a << " [" << std::hex << std::setfill('0') << std::setw(16) << d << std::setw(16) << c << std::setw(16) << b << std::setw(16) << a << "]\n"; } }