/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file BlockQueue.cpp * @author Gav Wood * @date 2014 */ #include "BlockQueue.h" #include #include #include #include "BlockChain.h" using namespace std; using namespace dev; using namespace dev::eth; ImportResult BlockQueue::import(bytesConstRef _block, BlockChain const& _bc, bool _isOurs) { // Check if we already know this block. h256 h = BlockInfo::headerHash(_block); cblockq << "Queuing block" << h.abridged() << "for import..."; UpgradableGuard l(m_lock); if (m_readySet.count(h) || m_drainingSet.count(h) || m_unknownSet.count(h) || m_knownBad.count(h)) { // Already know about this one. cblockq << "Already known."; return ImportResult::AlreadyKnown; } // VERIFY: populates from the block and checks the block is internally coherent. BlockInfo bi; try { // TODO: quick verify bi.populate(_block); bi.verifyInternals(_block); } catch (Exception const& _e) { cwarn << "Ignoring malformed block: " << diagnostic_information(_e); return ImportResult::Malformed; } // Check block doesn't already exist first! if (_bc.details(h)) { cblockq << "Already known in chain."; return ImportResult::AlreadyInChain; } UpgradeGuard ul(l); // Check it's not in the future (void)_isOurs; if (bi.timestamp > (u256)time(0)/* && !_isOurs*/) { m_future.insert(make_pair((unsigned)bi.timestamp, _block.toBytes())); char buf[24]; time_t bit = (unsigned)bi.timestamp; if (strftime(buf, 24, "%X", localtime(&bit)) == 0) buf[0] = '\0'; // empty if case strftime fails cblockq << "OK - queued for future [" << bi.timestamp << "vs" << time(0) << "] - will wait until" << buf; return ImportResult::FutureTime; } else { // We now know it. if (m_knownBad.count(bi.parentHash)) { m_knownBad.insert(bi.hash()); // bad parent; this is bad too, note it as such return ImportResult::BadChain; } else if (!m_readySet.count(bi.parentHash) && !m_drainingSet.count(bi.parentHash) && !_bc.isKnown(bi.parentHash)) { // We don't know the parent (yet) - queue it up for later. It'll get resent to us if we find out about its ancestry later on. cblockq << "OK - queued as unknown parent:" << bi.parentHash.abridged(); m_unknown.insert(make_pair(bi.parentHash, make_pair(h, _block.toBytes()))); m_unknownSet.insert(h); return ImportResult::UnknownParent; } else { // If valid, append to blocks. cblockq << "OK - ready for chain insertion."; m_ready.push_back(_block.toBytes()); m_readySet.insert(h); noteReadyWithoutWriteGuard(h); m_onReady(); return ImportResult::Success; } } } bool BlockQueue::doneDrain(h256s const& _bad) { WriteGuard l(m_lock); m_drainingSet.clear(); if (_bad.size()) { vector old; swap(m_ready, old); for (auto& b: old) { BlockInfo bi(b); if (m_knownBad.count(bi.parentHash)) m_knownBad.insert(bi.hash()); else m_ready.push_back(std::move(b)); } } m_knownBad += _bad; return !m_readySet.empty(); } void BlockQueue::tick(BlockChain const& _bc) { UpgradableGuard l(m_lock); if (m_future.empty()) return; cblockq << "Checking past-future blocks..."; unsigned t = time(0); if (t <= m_future.begin()->first) return; cblockq << "Past-future blocks ready."; vector todo; { UpgradeGuard l2(l); auto end = m_future.lower_bound(t); for (auto i = m_future.begin(); i != end; ++i) todo.push_back(move(i->second)); m_future.erase(m_future.begin(), end); } cblockq << "Importing" << todo.size() << "past-future blocks."; for (auto const& b: todo) import(&b, _bc); } template T advanced(T _t, unsigned _n) { std::advance(_t, _n); return _t; } void BlockQueue::drain(std::vector& o_out, unsigned _max) { WriteGuard l(m_lock); if (m_drainingSet.empty()) { o_out.resize(min(_max, m_ready.size())); for (unsigned i = 0; i < o_out.size(); ++i) swap(o_out[i], m_ready[i]); m_ready.erase(m_ready.begin(), advanced(m_ready.begin(), o_out.size())); for (auto const& bs: o_out) { auto h = sha3(bs); m_drainingSet.insert(h); m_readySet.erase(h); } // swap(o_out, m_ready); // swap(m_drainingSet, m_readySet); } } void BlockQueue::noteReadyWithoutWriteGuard(h256 _good) { list goodQueue(1, _good); while (!goodQueue.empty()) { auto r = m_unknown.equal_range(goodQueue.front()); goodQueue.pop_front(); for (auto it = r.first; it != r.second; ++it) { m_ready.push_back(it->second.second); auto newReady = it->second.first; m_unknownSet.erase(newReady); m_readySet.insert(newReady); goodQueue.push_back(newReady); } m_unknown.erase(r.first, r.second); } } void BlockQueue::retryAllUnknown() { for (auto it = m_unknown.begin(); it != m_unknown.end(); ++it) { m_ready.push_back(it->second.second); auto newReady = it->second.first; m_unknownSet.erase(newReady); m_readySet.insert(newReady); } m_unknown.clear(); }