/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file PeerNetwork.cpp * @authors: * Gav Wood * Eric Lombrozo * @date 2014 */ #include "PeerServer.h" #include #ifdef _WIN32 // winsock is already included // #include #else #include #endif #include #include #include #include #include #include #include "BlockChain.h" #include "TransactionQueue.h" #include "PeerSession.h" using namespace std; using namespace eth; // Addresses we will skip during network interface discovery // Use a vector as the list is small // Why this and not names? // Under MacOSX loopback (127.0.0.1) can be named lo0 and br0 are bridges (0.0.0.0) static const set c_rejectAddresses = { {bi::address_v4::from_string("127.0.0.1")}, {bi::address_v6::from_string("::1")}, {bi::address_v4::from_string("0.0.0.0")}, {bi::address_v6::from_string("::")} }; PeerServer::PeerServer(std::string const& _clientVersion, BlockChain const& _ch, unsigned int _networkId, unsigned short _port, NodeMode _m, string const& _publicAddress, bool _upnp): m_clientVersion(_clientVersion), m_mode(_m), m_listenPort(_port), m_chain(&_ch), m_acceptor(m_ioService, bi::tcp::endpoint(bi::tcp::v4(), _port)), m_socket(m_ioService), m_key(KeyPair::create()), m_networkId(_networkId) { populateAddresses(); determinePublic(_publicAddress, _upnp); ensureAccepting(); clog(NetNote) << "Id:" << toHex(m_key.address().ref().cropped(0, 4)) << "Mode: " << (_m == NodeMode::PeerServer ? "PeerServer" : "Full"); } PeerServer::PeerServer(std::string const& _clientVersion, BlockChain const& _ch, unsigned int _networkId, NodeMode _m, string const& _publicAddress, bool _upnp): m_clientVersion(_clientVersion), m_mode(_m), m_listenPort(0), m_chain(&_ch), m_acceptor(m_ioService, bi::tcp::endpoint(bi::tcp::v4(), 0)), m_socket(m_ioService), m_key(KeyPair::create()), m_networkId(_networkId) { m_listenPort = m_acceptor.local_endpoint().port(); // populate addresses. populateAddresses(); determinePublic(_publicAddress, _upnp); ensureAccepting(); clog(NetNote) << "Id:" << toHex(m_key.address().ref().cropped(0, 4)) << "Mode: " << (m_mode == NodeMode::PeerServer ? "PeerServer" : "Full"); } PeerServer::PeerServer(std::string const& _clientVersion, BlockChain const& _ch, unsigned int _networkId, NodeMode _m): m_clientVersion(_clientVersion), m_mode(_m), m_listenPort(0), m_chain(&_ch), m_acceptor(m_ioService, bi::tcp::endpoint(bi::tcp::v4(), 0)), m_socket(m_ioService), m_key(KeyPair::create()), m_networkId(_networkId) { // populate addresses. populateAddresses(); clog(NetNote) << "Id:" << toHex(m_key.address().ref().cropped(0, 4)) << "Mode: " << (m_mode == NodeMode::PeerServer ? "PeerServer" : "Full"); } PeerServer::~PeerServer() { for (auto const& i: m_peers) if (auto p = i.second.lock()) p->disconnect(ClientQuit); delete m_upnp; } unsigned PeerServer::protocolVersion() { return c_protocolVersion; } void PeerServer::determinePublic(string const& _publicAddress, bool _upnp) { if (_upnp) try { m_upnp = new UPnP; } catch (NoUPnPDevice) {} // let m_upnp continue as null - we handle it properly. bi::tcp::resolver r(m_ioService); if (m_upnp && m_upnp->isValid() && m_peerAddresses.size()) { clog(NetNote) << "External addr: " << m_upnp->externalIP(); int p = m_upnp->addRedirect(m_peerAddresses[0].to_string().c_str(), m_listenPort); if (p) clog(NetNote) << "Punched through NAT and mapped local port" << m_listenPort << "onto external port" << p << "."; else { // couldn't map clog(NetWarn) << "Couldn't punch through NAT (or no NAT in place). Assuming " << m_listenPort << " is local & external port."; p = m_listenPort; } auto eip = m_upnp->externalIP(); if (eip == string("0.0.0.0") && _publicAddress.empty()) m_public = bi::tcp::endpoint(bi::address(), (unsigned short)p); else { m_public = bi::tcp::endpoint(bi::address::from_string(_publicAddress.empty() ? eip : _publicAddress), (unsigned short)p); m_addresses.push_back(m_public.address().to_v4()); } } else { // No UPnP - fallback on given public address or, if empty, the assumed peer address. m_public = bi::tcp::endpoint(_publicAddress.size() ? bi::address::from_string(_publicAddress) : m_peerAddresses.size() ? m_peerAddresses[0] : bi::address(), m_listenPort); m_addresses.push_back(m_public.address().to_v4()); } } void PeerServer::populateAddresses() { #ifdef _WIN32 WSAData wsaData; if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0) throw NoNetworking(); char ac[80]; if (gethostname(ac, sizeof(ac)) == SOCKET_ERROR) { clog(NetWarn) << "Error " << WSAGetLastError() << " when getting local host name."; WSACleanup(); throw NoNetworking(); } struct hostent* phe = gethostbyname(ac); if (phe == 0) { clog(NetWarn) << "Bad host lookup."; WSACleanup(); throw NoNetworking(); } for (int i = 0; phe->h_addr_list[i] != 0; ++i) { struct in_addr addr; memcpy(&addr, phe->h_addr_list[i], sizeof(struct in_addr)); char *addrStr = inet_ntoa(addr); bi::address ad(bi::address::from_string(addrStr)); m_addresses.push_back(ad.to_v4()); bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end(); if (!isLocal) m_peerAddresses.push_back(ad.to_v4()); clog(NetNote) << "Address: " << ac << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]"); } WSACleanup(); #else ifaddrs* ifaddr; if (getifaddrs(&ifaddr) == -1) throw NoNetworking(); bi::tcp::resolver r(m_ioService); for (ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next) { if (!ifa->ifa_addr) continue; if (ifa->ifa_addr->sa_family == AF_INET) { char host[NI_MAXHOST]; if (getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr_in), host, NI_MAXHOST, NULL, 0, NI_NUMERICHOST)) continue; // TODO: Make exception safe when no internet. auto it = r.resolve({host, "30303"}); bi::tcp::endpoint ep = it->endpoint(); bi::address ad = ep.address(); m_addresses.push_back(ad.to_v4()); bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end(); if (!isLocal) m_peerAddresses.push_back(ad.to_v4()); clog(NetNote) << "Address: " << host << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]"); } } freeifaddrs(ifaddr); #endif } std::map PeerServer::potentialPeers() { std::map ret; if (!m_public.address().is_unspecified()) ret.insert(make_pair(m_key.pub(), m_public)); for (auto i: m_peers) if (auto j = i.second.lock()) { auto ep = j->endpoint(); // Skip peers with a listen port of zero or are on a private network bool peerOnNet = (j->m_listenPort != 0 && !isPrivateAddress(ep.address())); if (peerOnNet && ep.port() && j->m_id) ret.insert(make_pair(i.first, ep)); } return ret; } void PeerServer::ensureAccepting() { if (m_accepting == false) { clog(NetNote) << "Listening on local port " << m_listenPort << " (public: " << m_public << ")"; m_accepting = true; m_acceptor.async_accept(m_socket, [=](boost::system::error_code ec) { if (!ec) try { try { clog(NetNote) << "Accepted connection from " << m_socket.remote_endpoint(); } catch (...){} bi::address remoteAddress = m_socket.remote_endpoint().address(); // Port defaults to 0 - we let the hello tell us which port the peer listens to auto p = std::make_shared(this, std::move(m_socket), m_networkId, remoteAddress); p->start(); } catch (std::exception const& _e) { clog(NetWarn) << "ERROR: " << _e.what(); } m_accepting = false; if (ec.value() != 1 && (m_mode == NodeMode::PeerServer || m_peers.size() < m_idealPeerCount * 2)) ensureAccepting(); }); } } void PeerServer::connect(std::string const& _addr, unsigned short _port) noexcept { try { connect(bi::tcp::endpoint(bi::address::from_string(_addr), _port)); } catch (exception const& e) { // Couldn't connect clog(NetNote) << "Bad host " << _addr << " (" << e.what() << ")"; } } void PeerServer::connect(bi::tcp::endpoint const& _ep) { clog(NetNote) << "Attempting connection to " << _ep; bi::tcp::socket* s = new bi::tcp::socket(m_ioService); s->async_connect(_ep, [=](boost::system::error_code const& ec) { if (ec) { clog(NetNote) << "Connection refused to " << _ep << " (" << ec.message() << ")"; for (auto i = m_incomingPeers.begin(); i != m_incomingPeers.end(); ++i) if (i->second.first == _ep && i->second.second < 3) { m_freePeers.push_back(i->first); goto OK; } // for-else clog(NetNote) << "Giving up."; OK:; } else { auto p = make_shared(this, std::move(*s), m_networkId, _ep.address(), _ep.port()); clog(NetNote) << "Connected to " << _ep; p->start(); } delete s; }); } bool PeerServer::sync() { bool ret = false; if (isInitialised()) for (auto i = m_peers.begin(); i != m_peers.end();) { auto p = i->second.lock(); if (p && p->m_socket.is_open() && (p->m_disconnect == chrono::steady_clock::time_point::max() || chrono::steady_clock::now() - p->m_disconnect < chrono::seconds(1))) // kill old peers that should be disconnected. ++i; else { i = m_peers.erase(i); ret = true; } } return ret; } bool PeerServer::ensureInitialised(BlockChain& _bc, TransactionQueue& _tq) { if (m_latestBlockSent == h256()) { // First time - just initialise. m_latestBlockSent = _bc.currentHash(); clog(NetNote) << "Initialising: latest=" << m_latestBlockSent; for (auto const& i: _tq.transactions()) m_transactionsSent.insert(i.first); m_lastPeersRequest = chrono::steady_clock::time_point::min(); return true; } return false; } bool PeerServer::sync(BlockChain& _bc, TransactionQueue& _tq, OverlayDB& _o) { bool ret = ensureInitialised(_bc, _tq); if (sync()) ret = true; if (m_mode == NodeMode::Full) { for (auto it = m_incomingTransactions.begin(); it != m_incomingTransactions.end(); ++it) if (_tq.import(&*it)) {}//ret = true; // just putting a transaction in the queue isn't enough to change the state - it might have an invalid nonce... else m_transactionsSent.insert(sha3(*it)); // if we already had the transaction, then don't bother sending it on. m_incomingTransactions.clear(); auto h = _bc.currentHash(); bool resendAll = (h != m_latestBlockSent); // Send any new transactions. for (auto j: m_peers) if (auto p = j.second.lock()) { bytes b; uint n = 0; for (auto const& i: _tq.transactions()) if ((!m_transactionsSent.count(i.first) && !p->m_knownTransactions.count(i.first)) || p->m_requireTransactions || resendAll) { b += i.second; ++n; m_transactionsSent.insert(i.first); } if (n) { RLPStream ts; PeerSession::prep(ts); ts.appendList(n + 1) << TransactionsPacket; ts.appendRaw(b, n).swapOut(b); seal(b); p->send(&b); } p->m_knownTransactions.clear(); p->m_requireTransactions = false; } // Send any new blocks. if (h != m_latestBlockSent) { // TODO: find where they diverge and send complete new branch. RLPStream ts; PeerSession::prep(ts); ts.appendList(2) << BlocksPacket; bytes b; ts.appendRaw(_bc.block(_bc.currentHash())).swapOut(b); seal(b); for (auto j: m_peers) if (auto p = j.second.lock()) { if (!p->m_knownBlocks.count(_bc.currentHash())) p->send(&b); p->m_knownBlocks.clear(); } } m_latestBlockSent = h; for (int accepted = 1, n = 0; accepted; ++n) { accepted = 0; if (m_incomingBlocks.size()) for (auto it = prev(m_incomingBlocks.end());; --it) { try { _bc.import(*it, _o); it = m_incomingBlocks.erase(it); ++accepted; ret = true; } catch (UnknownParent) { // Don't (yet) know its parent. Leave it for later. m_unknownParentBlocks.push_back(*it); it = m_incomingBlocks.erase(it); } catch (...) { // Some other error - erase it. it = m_incomingBlocks.erase(it); } if (it == m_incomingBlocks.begin()) break; } if (!n && accepted) { for (auto i: m_unknownParentBlocks) m_incomingBlocks.push_back(i); m_unknownParentBlocks.clear(); } } // Connect to additional peers while (m_peers.size() < m_idealPeerCount) { if (m_freePeers.empty()) { if (chrono::steady_clock::now() > m_lastPeersRequest + chrono::seconds(10)) { RLPStream s; bytes b; (PeerSession::prep(s).appendList(1) << GetPeersPacket).swapOut(b); seal(b); for (auto const& i: m_peers) if (auto p = i.second.lock()) if (p->isOpen()) p->send(&b); m_lastPeersRequest = chrono::steady_clock::now(); } if (!m_accepting) ensureAccepting(); break; } auto x = time(0) % m_freePeers.size(); m_incomingPeers[m_freePeers[x]].second++; connect(m_incomingPeers[m_freePeers[x]].first); m_freePeers.erase(m_freePeers.begin() + x); } } // platform for consensus of social contract. // restricts your freedom but does so fairly. and that's the value proposition. // guarantees that everyone else respect the rules of the system. (i.e. obeys laws). // We'll keep at most twice as many as is ideal, halfing what counts as "too young to kill" until we get there. for (uint old = 15000; m_peers.size() > m_idealPeerCount * 2 && old > 100; old /= 2) while (m_peers.size() > m_idealPeerCount) { // look for worst peer to kick off // first work out how many are old enough to kick off. shared_ptr worst; unsigned agedPeers = 0; for (auto i: m_peers) if (auto p = i.second.lock()) if ((m_mode != NodeMode::PeerServer || p->m_caps != 0x01) && chrono::steady_clock::now() > p->m_connect + chrono::milliseconds(old)) // don't throw off new peers; peer-servers should never kick off other peer-servers. { ++agedPeers; if ((!worst || p->m_rating < worst->m_rating || (p->m_rating == worst->m_rating && p->m_connect > worst->m_connect))) // kill older ones worst = p; } if (!worst || agedPeers <= m_idealPeerCount) break; worst->disconnect(TooManyPeers); } return ret; } std::vector PeerServer::peers(bool _updatePing) const { if (_updatePing) const_cast(this)->pingAll(); this_thread::sleep_for(chrono::milliseconds(200)); std::vector ret; for (auto& i: m_peers) if (auto j = i.second.lock()) if (j->m_socket.is_open()) ret.push_back(j->m_info); return ret; } void PeerServer::pingAll() { for (auto& i: m_peers) if (auto j = i.second.lock()) j->ping(); } bytes PeerServer::savePeers() const { RLPStream ret; int n = 0; for (auto& i: m_peers) if (auto p = i.second.lock()) if (p->m_socket.is_open() && p->endpoint().port()) { ret.appendList(3) << p->endpoint().address().to_v4().to_bytes() << p->endpoint().port() << p->m_id; n++; } return RLPStream(n).appendRaw(ret.out(), n).out(); } void PeerServer::restorePeers(bytesConstRef _b) { for (auto i: RLP(_b)) { auto k = (Public)i[2]; if (!m_incomingPeers.count(k)) { m_incomingPeers.insert(make_pair(k, make_pair(bi::tcp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt()), 0))); m_freePeers.push_back(k); } } }