/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file BlockQueue.cpp * @author Gav Wood * @date 2014 */ #include "BlockQueue.h" #include #include #include #include #include #include "BlockChain.h" using namespace std; using namespace dev; using namespace dev::eth; #ifdef _WIN32 const char* BlockQueueChannel::name() { return EthOrange "[]>"; } #else const char* BlockQueueChannel::name() { return EthOrange "▣┅▶"; } #endif BlockQueue::BlockQueue() { // Allow some room for other activity unsigned verifierThreads = std::max(thread::hardware_concurrency(), 3U) - 2U; for (unsigned i = 0; i < verifierThreads; ++i) m_verifiers.emplace_back([=](){ setThreadName("verifier" + toString(i)); this->verifierBody(); }); } BlockQueue::~BlockQueue() { m_deleting = true; m_moreToVerify.notify_all(); for (auto& i: m_verifiers) i.join(); } void BlockQueue::verifierBody() { while (!m_deleting) { std::pair work; { unique_lock l(m_verification); m_moreToVerify.wait(l, [&](){ return !m_unverified.empty() || m_deleting; }); if (m_deleting) return; swap(work, m_unverified.front()); m_unverified.pop_front(); BlockInfo bi; bi.mixHash = work.first; m_verifying.push_back(make_pair(bi, bytes())); } std::pair res; swap(work.second, res.second); try { try { res.first.populate(res.second, CheckEverything, work.first); res.first.verifyInternals(&res.second); } catch (InvalidNonce&) { badBlock(res.second, "Invalid block nonce"); cwarn << " Nonce:" << res.first.nonce.hex(); cwarn << " PoWHash:" << res.first.headerHash(WithoutNonce).hex(); cwarn << " SeedHash:" << res.first.seedHash().hex(); cwarn << " Target:" << res.first.boundary().hex(); cwarn << " MixHash:" << res.first.mixHash.hex(); Ethash::Result er = EthashAux::eval(res.first.seedHash(), res.first.headerHash(WithoutNonce), res.first.nonce); cwarn << " Ethash v:" << er.value.hex(); cwarn << " Ethash mH:" << er.mixHash.hex(); throw; } catch (Exception& _e) { badBlock(res.second, _e.what()); throw; } RLP r(&res.second); for (auto const& uncle: r[2]) { try { BlockInfo().populateFromHeader(RLP(uncle.data()), CheckEverything); } catch (InvalidNonce&) { badBlockHeader(uncle.data(), "Invalid uncle nonce"); BlockInfo bi = BlockInfo::fromHeader(uncle.data(), CheckNothing); cwarn << " Nonce:" << bi.nonce.hex(); cwarn << " PoWHash:" << bi.headerHash(WithoutNonce).hex(); cwarn << " SeedHash:" << bi.seedHash().hex(); cwarn << " Target:" << bi.boundary().hex(); cwarn << " MixHash:" << bi.mixHash.hex(); Ethash::Result er = EthashAux::eval(bi.seedHash(), bi.headerHash(WithoutNonce), bi.nonce); cwarn << " Ethash v:" << er.value.hex(); cwarn << " Ethash mH:" << er.mixHash.hex(); throw; } catch (Exception& _e) { badBlockHeader(uncle.data(), _e.what()); throw; } } } catch (...) { // bad block. { // has to be this order as that's how invariants() assumes. WriteGuard l2(m_lock); unique_lock l(m_verification); m_readySet.erase(work.first); m_knownBad.insert(work.first); } unique_lock l(m_verification); for (auto it = m_verifying.begin(); it != m_verifying.end(); ++it) if (it->first.mixHash == work.first) { m_verifying.erase(it); goto OK1; } cwarn << "GAA BlockQueue corrupt: job cancelled but cannot be found in m_verifying queue."; OK1:; continue; } bool ready = false; { unique_lock l(m_verification); if (m_verifying.front().first.mixHash == work.first) { // we're next! m_verifying.pop_front(); m_verified.push_back(move(res)); while (m_verifying.size() && !m_verifying.front().second.empty()) { m_verified.push_back(move(m_verifying.front())); m_verifying.pop_front(); } ready = true; } else { for (auto& i: m_verifying) if (i.first.mixHash == work.first) { i = move(res); goto OK; } cwarn << "GAA BlockQueue corrupt: job finished but cannot be found in m_verifying queue."; OK:; } } if (ready) m_onReady(); } } ImportResult BlockQueue::import(bytesConstRef _block, BlockChain const& _bc, bool _isOurs) { // Check if we already know this block. h256 h = BlockInfo::headerHash(_block); cblockq << "Queuing block" << h << "for import..."; UpgradableGuard l(m_lock); if (m_readySet.count(h) || m_drainingSet.count(h) || m_unknownSet.count(h) || m_knownBad.count(h)) { // Already know about this one. cblockq << "Already known."; return ImportResult::AlreadyKnown; } // VERIFY: populates from the block and checks the block is internally coherent. BlockInfo bi; try { // TODO: quick verify bi.populate(_block); bi.verifyInternals(_block); } catch (Exception const& _e) { cwarn << "Ignoring malformed block: " << diagnostic_information(_e); return ImportResult::Malformed; } // Check block doesn't already exist first! if (_bc.details(h)) { cblockq << "Already known in chain."; return ImportResult::AlreadyInChain; } UpgradeGuard ul(l); DEV_INVARIANT_CHECK; // Check it's not in the future (void)_isOurs; if (bi.timestamp > (u256)time(0)/* && !_isOurs*/) { m_future.insert(make_pair((unsigned)bi.timestamp, make_pair(h, _block.toBytes()))); char buf[24]; time_t bit = (unsigned)bi.timestamp; if (strftime(buf, 24, "%X", localtime(&bit)) == 0) buf[0] = '\0'; // empty if case strftime fails cblockq << "OK - queued for future [" << bi.timestamp << "vs" << time(0) << "] - will wait until" << buf; return ImportResult::FutureTime; } else { // We now know it. if (m_knownBad.count(bi.parentHash)) { m_knownBad.insert(bi.hash()); // bad parent; this is bad too, note it as such return ImportResult::BadChain; } else if (!m_readySet.count(bi.parentHash) && !m_drainingSet.count(bi.parentHash) && !_bc.isKnown(bi.parentHash)) { // We don't know the parent (yet) - queue it up for later. It'll get resent to us if we find out about its ancestry later on. cblockq << "OK - queued as unknown parent:" << bi.parentHash; m_unknown.insert(make_pair(bi.parentHash, make_pair(h, _block.toBytes()))); m_unknownSet.insert(h); return ImportResult::UnknownParent; } else { // If valid, append to blocks. cblockq << "OK - ready for chain insertion."; DEV_GUARDED(m_verification) m_unverified.push_back(make_pair(h, _block.toBytes())); m_moreToVerify.notify_one(); m_readySet.insert(h); noteReady_WITH_LOCK(h); return ImportResult::Success; } } } bool BlockQueue::doneDrain(h256s const& _bad) { WriteGuard l(m_lock); DEV_INVARIANT_CHECK; m_drainingSet.clear(); if (_bad.size()) { vector> old; DEV_GUARDED(m_verification) swap(m_verified, old); for (auto& b: old) { if (m_knownBad.count(b.first.parentHash)) { m_knownBad.insert(b.first.hash()); m_readySet.erase(b.first.hash()); } else DEV_GUARDED(m_verification) m_verified.push_back(std::move(b)); } } m_knownBad += _bad; return !m_readySet.empty(); } void BlockQueue::tick(BlockChain const& _bc) { vector> todo; { UpgradableGuard l(m_lock); if (m_future.empty()) return; cblockq << "Checking past-future blocks..."; unsigned t = time(0); if (t <= m_future.begin()->first) return; cblockq << "Past-future blocks ready."; { UpgradeGuard l2(l); DEV_INVARIANT_CHECK; auto end = m_future.lower_bound(t); for (auto i = m_future.begin(); i != end; ++i) todo.push_back(move(i->second)); m_future.erase(m_future.begin(), end); } } cblockq << "Importing" << todo.size() << "past-future blocks."; for (auto const& b: todo) import(&b.second, _bc); } template T advanced(T _t, unsigned _n) { std::advance(_t, _n); return _t; } QueueStatus BlockQueue::blockStatus(h256 const& _h) const { ReadGuard l(m_lock); return m_readySet.count(_h) ? QueueStatus::Ready : m_drainingSet.count(_h) ? QueueStatus::Importing : m_unknownSet.count(_h) ? QueueStatus::UnknownParent : m_knownBad.count(_h) ? QueueStatus::Bad : QueueStatus::Unknown; } void BlockQueue::drain(std::vector>& o_out, unsigned _max) { WriteGuard l(m_lock); DEV_INVARIANT_CHECK; if (m_drainingSet.empty()) { DEV_GUARDED(m_verification) { o_out.resize(min(_max, m_verified.size())); for (unsigned i = 0; i < o_out.size(); ++i) swap(o_out[i], m_verified[i]); m_verified.erase(m_verified.begin(), advanced(m_verified.begin(), o_out.size())); } for (auto const& bs: o_out) { // TODO: @optimise use map rather than vector & set. auto h = bs.first.hash(); m_drainingSet.insert(h); m_readySet.erase(h); } } } bool BlockQueue::invariants() const { Guard l(m_verification); return m_readySet.size() == m_verified.size() + m_unverified.size() + m_verifying.size(); } void BlockQueue::noteReady_WITH_LOCK(h256 const& _good) { DEV_INVARIANT_CHECK; list goodQueue(1, _good); bool notify = false; while (!goodQueue.empty()) { auto r = m_unknown.equal_range(goodQueue.front()); goodQueue.pop_front(); for (auto it = r.first; it != r.second; ++it) { DEV_GUARDED(m_verification) m_unverified.push_back(it->second); auto newReady = it->second.first; m_unknownSet.erase(newReady); m_readySet.insert(newReady); goodQueue.push_back(newReady); notify = true; } m_unknown.erase(r.first, r.second); } if (notify) m_moreToVerify.notify_all(); } void BlockQueue::retryAllUnknown() { WriteGuard l(m_lock); DEV_INVARIANT_CHECK; for (auto it = m_unknown.begin(); it != m_unknown.end(); ++it) { DEV_GUARDED(m_verification) m_unverified.push_back(it->second); auto newReady = it->second.first; m_unknownSet.erase(newReady); m_readySet.insert(newReady); m_moreToVerify.notify_one(); } m_unknown.clear(); m_moreToVerify.notify_all(); }