/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file NodeTable.h * @author Alex Leverington * @date 2014 */ #pragma once #include #include #include #include #include "Common.h" namespace dev { namespace p2p { /** * NodeEntry * @brief Entry in Node Table */ struct NodeEntry: public Node { NodeEntry(Node _src, Public _pubk, NodeIPEndpoint _gw); NodeEntry(Node _src, Public _pubk, bi::udp::endpoint _udp); unsigned const distance; ///< Node's distance (xor of _src as integer). bool pending = true; ///< Node will be ignored until Pong is received }; enum NodeTableEventType { NodeEntryAdded, NodeEntryDropped }; class NodeTable; class NodeTableEventHandler { friend class NodeTable; public: virtual void processEvent(NodeId const& _n, NodeTableEventType const& _e) = 0; protected: /// Called by NodeTable on behalf of an implementation (Host) to process new events without blocking nodetable. void processEvents() { std::list> events; { Guard l(x_events); if (!m_nodeEventHandler.size()) return; m_nodeEventHandler.unique(); for (auto const& n: m_nodeEventHandler) events.push_back(std::make_pair(n,m_events[n])); m_nodeEventHandler.clear(); m_events.clear(); } for (auto const& e: events) processEvent(e.first, e.second); } /// Called by NodeTable to append event. virtual void appendEvent(NodeId _n, NodeTableEventType _e) { Guard l(x_events); m_nodeEventHandler.push_back(_n); m_events[_n] = _e; } Mutex x_events; std::list m_nodeEventHandler; std::map m_events; }; class NodeTable; inline std::ostream& operator<<(std::ostream& _out, NodeTable const& _nodeTable); /** * NodeTable using modified kademlia for node discovery and preference. * Node table requires an IO service, creates a socket for incoming * UDP messages and implements a kademlia-like protocol. Node requests and * responses are used to build a node table which can be queried to * obtain a list of potential nodes to connect to, and, passes events to * Host whenever a node is added or removed to/from the table. * * Thread-safety is ensured by modifying NodeEntry details via * shared_ptr replacement instead of mutating values. * * NodeTable accepts a port for UDP and will listen to the port on all available * interfaces. * * * [Integration] * @todo TCP endpoints * @todo GC uniform 1/32 entires at 112500ms interval * * [Optimization] * @todo serialize evictions per-bucket * @todo store evictions in map, unit-test eviction logic * @todo store root node in table * @todo encapsulate discover into NetworkAlgorithm (task) * @todo Pong to include ip:port where ping was received * @todo expiration and sha3(id) 'to' for messages which are replies (prevents replay) * @todo cache Ping and FindSelf * * [Networking] * @todo node-endpoint updates * @todo TCP endpoints * @todo eth/upnp/natpmp/stun/ice/etc for public-discovery * @todo firewall * * [Protocol] * @todo optimize knowledge at opposite edges; eg, s_bitsPerStep lookups. (Can be done via pointers to NodeBucket) * @todo ^ s_bitsPerStep = 8; // Denoted by b in [Kademlia]. Bits by which address space is divided. */ class NodeTable: UDPSocketEvents, public std::enable_shared_from_this { friend std::ostream& operator<<(std::ostream& _out, NodeTable const& _nodeTable); using NodeSocket = UDPSocket; using TimePoint = std::chrono::steady_clock::time_point; ///< Steady time point. using NodeIdTimePoint = std::pair; using EvictionTimeout = std::pair; ///< First NodeId (NodeIdTimePoint) may be evicted and replaced with second NodeId. public: /// Constructor requiring host for I/O, credentials, and IP Address and port to listen on. NodeTable(ba::io_service& _io, KeyPair _alias, bi::address const& _udpAddress, uint16_t _udpPort = 30303); ~NodeTable(); /// Returns distance based on xor metric two node ids. Used by NodeEntry and NodeTable. static unsigned distance(NodeId const& _a, NodeId const& _b) { u512 d = _a ^ _b; unsigned ret; for (ret = 0; d >>= 1; ++ret) {}; return ret; } /// Set event handler for NodeEntryAdded and NodeEntryDropped events. void setEventHandler(NodeTableEventHandler* _handler) { m_nodeEventHandler.reset(_handler); } /// Called by implementation which provided handler to process NodeEntryAdded/NodeEntryDropped events. Events are coalesced by type whereby old events are ignored. void processEvents(); /// Add node. Node will be pinged and empty shared_ptr is returned if NodeId is uknown. std::shared_ptr addNode(Public const& _pubk, bi::udp::endpoint const& _udp, bi::tcp::endpoint const& _tcp); /// Add node. Node will be pinged and empty shared_ptr is returned if node has never been seen. std::shared_ptr addNode(Node const& _node); /// To be called when node table is empty. Runs node discovery with m_node.id as the target in order to populate node-table. void discover(); /// Returns list of node ids active in node table. std::list nodes() const; /// Returns node count. unsigned count() const { return m_nodes.size(); } /// Returns snapshot of table. std::list snapshot() const; /// Returns true if node id is in node table. bool haveNode(NodeId const& _id) { Guard l(x_nodes); return m_nodes.count(_id) > 0; } /// Returns the Node to the corresponding node id or the empty Node if that id is not found. Node node(NodeId const& _id); #if defined(BOOST_AUTO_TEST_SUITE) || defined(_MSC_VER) // MSVC includes access specifier in symbol name protected: #else private: #endif /// Constants for Kademlia, derived from address space. static unsigned const s_addressByteSize = sizeof(NodeId); ///< Size of address type in bytes. static unsigned const s_bits = 8 * s_addressByteSize; ///< Denoted by n in [Kademlia]. static unsigned const s_bins = s_bits - 1; ///< Size of m_state (excludes root, which is us). static unsigned const s_maxSteps = boost::static_log2::value; ///< Max iterations of discovery. (discover) /// Chosen constants static unsigned const s_bucketSize = 16; ///< Denoted by k in [Kademlia]. Number of nodes stored in each bucket. static unsigned const s_alpha = 3; ///< Denoted by \alpha in [Kademlia]. Number of concurrent FindNode requests. /// Intervals /* todo: replace boost::posix_time; change constants to upper camelcase */ boost::posix_time::milliseconds const c_evictionCheckInterval = boost::posix_time::milliseconds(75); ///< Interval at which eviction timeouts are checked. std::chrono::milliseconds const c_reqTimeout = std::chrono::milliseconds(300); ///< How long to wait for requests (evict, find iterations). std::chrono::milliseconds const c_bucketRefresh = std::chrono::milliseconds(57600); ///< Refresh interval prevents bucket from becoming stale. [Kademlia] struct NodeBucket { unsigned distance; TimePoint modified; std::list> nodes; void touch() { modified = std::chrono::steady_clock::now(); } }; /// Used to ping endpoint. void ping(bi::udp::endpoint _to) const; /// Used ping known node. Used by node table when refreshing buckets and as part of eviction process (see evict). void ping(NodeEntry* _n) const; /// Returns center node entry which describes this node and used with dist() to calculate xor metric for node table nodes. NodeEntry center() const { return NodeEntry(m_node, m_node.publicKey(), m_node.endpoint.udp); } /// Used by asynchronous operations to return NodeEntry which is active and managed by node table. std::shared_ptr nodeEntry(NodeId _id); /// Used to discovery nodes on network which are close to the given target. /// Sends s_alpha concurrent requests to nodes nearest to target, for nodes nearest to target, up to s_maxSteps rounds. void discover(NodeId _target, unsigned _round = 0, std::shared_ptr>> _tried = std::shared_ptr>>()); /// Returns nodes from node table which are closest to target. std::vector> nearestNodeEntries(NodeId _target); /// Asynchronously drops _leastSeen node if it doesn't reply and adds _new node, otherwise _new node is thrown away. void evict(std::shared_ptr _leastSeen, std::shared_ptr _new); /// Called whenever activity is received from a node in order to maintain node table. void noteActiveNode(Public const& _pubk, bi::udp::endpoint const& _endpoint); /// Used to drop node when timeout occurs or when evict() result is to keep previous node. void dropNode(std::shared_ptr _n); /// Returns references to bucket which corresponds to distance of node id. /// @warning Only use the return reference locked x_state mutex. // TODO p2p: Remove this method after removing offset-by-one functionality. NodeBucket& bucket_UNSAFE(NodeEntry const* _n); /// General Network Events /// Called by m_socket when packet is received. void onReceived(UDPSocketFace*, bi::udp::endpoint const& _from, bytesConstRef _packet); /// Called by m_socket when socket is disconnected. void onDisconnected(UDPSocketFace*) {} /// Tasks /// Called by evict() to ensure eviction check is scheduled to run and terminates when no evictions remain. Asynchronous. void doCheckEvictions(boost::system::error_code const& _ec); /// Purges and pings nodes for any buckets which haven't been touched for c_bucketRefresh seconds. void doRefreshBuckets(boost::system::error_code const& _ec); std::unique_ptr m_nodeEventHandler; ///< Event handler for node events. Node m_node; ///< This node. Secret m_secret; ///< This nodes secret key. mutable Mutex x_nodes; ///< LOCK x_state first if both locks are required. Mutable for thread-safe copy in nodes() const. std::map> m_nodes; ///< Nodes mutable Mutex x_state; ///< LOCK x_state first if both x_nodes and x_state locks are required. std::array m_state; ///< State of p2p node network. Mutex x_evictions; ///< LOCK x_nodes first if both x_nodes and x_evictions locks are required. std::deque m_evictions; ///< Eviction timeouts. Mutex x_pubkDiscoverPings; ///< LOCK x_nodes first if both x_nodes and x_pubkDiscoverPings locks are required. std::map m_pubkDiscoverPings; ///< List of pending pings where node entry wasn't created due to unkown pubk. Mutex x_findNodeTimeout; std::list m_findNodeTimout; ///< Timeouts for pending Ping and FindNode requests. ba::io_service& m_io; ///< Used by bucket refresh timer. std::shared_ptr m_socket; ///< Shared pointer for our UDPSocket; ASIO requires shared_ptr. NodeSocket* m_socketPointer; ///< Set to m_socket.get(). Socket is created in constructor and disconnected in destructor to ensure access to pointer is safe. boost::asio::deadline_timer m_bucketRefreshTimer; ///< Timer which schedules and enacts bucket refresh. boost::asio::deadline_timer m_evictionCheckTimer; ///< Timer for handling node evictions. }; inline std::ostream& operator<<(std::ostream& _out, NodeTable const& _nodeTable) { _out << _nodeTable.center().address() << "\t" << "0\t" << _nodeTable.center().endpoint.udp.address() << ":" << _nodeTable.center().endpoint.udp.port() << std::endl; auto s = _nodeTable.snapshot(); for (auto n: s) _out << n.address() << "\t" << n.distance << "\t" << n.endpoint.udp.address() << ":" << n.endpoint.udp.port() << std::endl; return _out; } struct InvalidRLP: public Exception {}; /** * Ping packet: Sent to check if node is alive. * PingNode is cached and regenerated after expiration - t, where t is timeout. * * Ping is used to implement evict. When a new node is seen for * a given bucket which is full, the least-responsive node is pinged. * If the pinged node doesn't respond, then it is removed and the new * node is inserted. * * RLP Encoded Items: 3 * Minimum Encoded Size: 18 bytes * Maximum Encoded Size: bytes // todo after u128 addresses * * signature: Signature of message. * ipAddress: Our IP address. * port: Our port. * expiration: Triggers regeneration of packet. May also provide control over synchronization. * * @todo uint128_t for ip address (<->integer ipv4/6, asio-address, asio-endpoint) * */ struct PingNode: RLPXDatagram { PingNode(bi::udp::endpoint _ep): RLPXDatagram(_ep) {} PingNode(bi::udp::endpoint _ep, std::string _src, uint16_t _srcPort, std::chrono::seconds _expiration = std::chrono::seconds(60)): RLPXDatagram(_ep), ipAddress(_src), port(_srcPort), expiration(futureFromEpoch(_expiration)) {} static const uint8_t type = 1; unsigned version = 0; std::string ipAddress; unsigned port; unsigned expiration; void streamRLP(RLPStream& _s) const override; void interpretRLP(bytesConstRef _bytes) override; }; /** * Pong packet: Sent in response to ping * * RLP Encoded Items: 2 * Minimum Encoded Size: 33 bytes * Maximum Encoded Size: 33 bytes */ struct Pong: RLPXDatagram { Pong(bi::udp::endpoint _ep): RLPXDatagram(_ep), expiration(futureFromEpoch(std::chrono::seconds(60))) {} static const uint8_t type = 2; h256 echo; ///< MCD of PingNode unsigned expiration; void streamRLP(RLPStream& _s) const { _s.appendList(2); _s << echo << expiration; } void interpretRLP(bytesConstRef _bytes) { RLP r(_bytes); echo = (h256)r[0]; expiration = r[1].toInt(); } }; /** * FindNode Packet: Request k-nodes, closest to the target. * FindNode is cached and regenerated after expiration - t, where t is timeout. * FindNode implicitly results in finding neighbours of a given node. * * RLP Encoded Items: 2 * Minimum Encoded Size: 21 bytes * Maximum Encoded Size: 30 bytes * * target: NodeId of node. The responding node will send back nodes closest to the target. * expiration: Triggers regeneration of packet. May also provide control over synchronization. * */ struct FindNode: RLPXDatagram { FindNode(bi::udp::endpoint _ep): RLPXDatagram(_ep) {} FindNode(bi::udp::endpoint _ep, NodeId _target, std::chrono::seconds _expiration = std::chrono::seconds(30)): RLPXDatagram(_ep), target(_target), expiration(futureFromEpoch(_expiration)) {} static const uint8_t type = 3; h512 target; unsigned expiration; void streamRLP(RLPStream& _s) const { _s.appendList(2); _s << target << expiration; } void interpretRLP(bytesConstRef _bytes) { RLP r(_bytes); target = r[0].toHash(); expiration = r[1].toInt(); } }; /** * Node Packet: Multiple node packets are sent in response to FindNode. * * RLP Encoded Items: 2 (first item is list) * Minimum Encoded Size: 10 bytes */ struct Neighbours: RLPXDatagram { struct Node { Node() = default; Node(RLP const& _r) { interpretRLP(_r); } std::string ipAddress; unsigned port; NodeId node; void streamRLP(RLPStream& _s) const { _s.appendList(3); _s << ipAddress << port << node; } void interpretRLP(RLP const& _r) { ipAddress = _r[0].toString(); port = _r[1].toInt(); node = h512(_r[2].toBytes()); } }; Neighbours(bi::udp::endpoint _ep): RLPXDatagram(_ep), expiration(futureFromEpoch(std::chrono::seconds(30))) {} Neighbours(bi::udp::endpoint _to, std::vector> const& _nearest, unsigned _offset = 0, unsigned _limit = 0): RLPXDatagram(_to), expiration(futureFromEpoch(std::chrono::seconds(30))) { auto limit = _limit ? std::min(_nearest.size(), (size_t)(_offset + _limit)) : _nearest.size(); for (auto i = _offset; i < limit; i++) { Node node; node.ipAddress = _nearest[i]->endpoint.udp.address().to_string(); node.port = _nearest[i]->endpoint.udp.port(); node.node = _nearest[i]->publicKey(); nodes.push_back(node); } } static const uint8_t type = 4; std::vector nodes; unsigned expiration = 1; void streamRLP(RLPStream& _s) const { _s.appendList(2); _s.appendList(nodes.size()); for (auto& n: nodes) n.streamRLP(_s); _s << expiration; } void interpretRLP(bytesConstRef _bytes) { RLP r(_bytes); for (auto n: r[0]) nodes.push_back(Node(n)); expiration = r[1].toInt(); } }; struct NodeTableWarn: public LogChannel { static const char* name() { return "!P!"; } static const int verbosity = 0; }; struct NodeTableNote: public LogChannel { static const char* name() { return "*P*"; } static const int verbosity = 1; }; struct NodeTableMessageSummary: public LogChannel { static const char* name() { return "-P-"; } static const int verbosity = 2; }; struct NodeTableMessageDetail: public LogChannel { static const char* name() { return "=P="; } static const int verbosity = 5; }; struct NodeTableConnect: public LogChannel { static const char* name() { return "+P+"; } static const int verbosity = 10; }; struct NodeTableEvent: public LogChannel { static const char* name() { return "+P+"; } static const int verbosity = 10; }; struct NodeTableTimer: public LogChannel { static const char* name() { return "+P+"; } static const int verbosity = 10; }; struct NodeTableUpdate: public LogChannel { static const char* name() { return "+P+"; } static const int verbosity = 10; }; struct NodeTableTriviaSummary: public LogChannel { static const char* name() { return "-P-"; } static const int verbosity = 10; }; struct NodeTableTriviaDetail: public LogChannel { static const char* name() { return "=P="; } static const int verbosity = 11; }; struct NodeTableAllDetail: public LogChannel { static const char* name() { return "=P="; } static const int verbosity = 13; }; struct NodeTableEgress: public LogChannel { static const char* name() { return ">>P"; } static const int verbosity = 14; }; struct NodeTableIngress: public LogChannel { static const char* name() { return "<