/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file EthereumHost.h
* @author Gav Wood
* @date 2014
*/
#pragma once
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "CommonNet.h"
#include "EthereumPeer.h"
#include "DownloadMan.h"
namespace dev
{
class RLPStream;
namespace eth
{
class TransactionQueue;
class BlockQueue;
/**
* @brief The EthereumHost class
* @warning None of this is thread-safe. You have been warned.
* @doWork Syncs to peers and sends new blocks and transactions.
*/
class EthereumHost: public p2p::HostCapability, Worker
{
public:
/// Start server, but don't listen.
EthereumHost(BlockChain const& _ch, TransactionQueue& _tq, BlockQueue& _bq, u256 _networkId);
/// Will block on network process events.
virtual ~EthereumHost();
unsigned protocolVersion() const { return c_protocolVersion; }
u256 networkId() const { return m_networkId; }
void setNetworkId(u256 _n) { m_networkId = _n; }
void reset();
DownloadMan const& downloadMan() const { return m_man; }
bool isSyncing() const { RecursiveGuard l(x_sync); return isSyncing_UNSAFE(); }
bool isBanned(p2p::NodeId const& _id) const { return !!m_banned.count(_id); }
void noteNewTransactions() { m_newTransactions = true; }
void noteNewBlocks() { m_newBlocks = true; }
void onPeerStatus(EthereumPeer* _peer); ///< Called by peer to report status
void onPeerBlocks(EthereumPeer* _peer, RLP const& _r); ///< Called by peer once it has new blocks during syn
void onPeerNewBlock(EthereumPeer* _peer, RLP const& _r); ///< Called by peer once it has new blocks
void onPeerNewHashes(EthereumPeer* _peer, h256s const& _hashes); ///< Called by peer once it has new hashes
void onPeerHashes(EthereumPeer* _peer, h256s const& _hashes); ///< Called by peer once it has another sequential block of hashes during sync
void onPeerTransactions(EthereumPeer* _peer, RLP const& _r); ///< Called by peer when it has new transactions
void onPeerAborting(EthereumPeer* _peer); ///< Called by peer when it is disconnecting
DownloadMan& downloadMan() { return m_man; }
HashDownloadMan& hashDownloadMan() { return m_hashMan; }
BlockChain const& chain() { return m_chain; }
HashChainStatus status();
static unsigned const c_oldProtocolVersion;
private:
std::tuple>, std::vector>, std::vector>> randomSelection(unsigned _percent = 25, std::function const& _allow = [](EthereumPeer const*){ return true; });
void foreachPeerPtr(std::function)> const& _f) const;
void foreachPeer(std::function const& _f) const;
bool isSyncing_UNSAFE() const;
/// Sync with the BlockChain. It might contain one of our mined blocks, we might have new candidates from the network.
void doWork();
void maintainTransactions();
void maintainBlocks(h256 const& _currentBlock);
/// Get a bunch of needed blocks.
/// Removes them from our list of needed blocks.
/// @returns empty if there's no more blocks left to fetch, otherwise the blocks to fetch.
h256Hash neededBlocks(h256Hash const& _exclude);
/// Check to see if the network peer-state initialisation has happened.
bool isInitialised() const { return (bool)m_latestBlockSent; }
/// Initialises the network peer-state, doing the stuff that needs to be once-only. @returns true if it really was first.
bool ensureInitialised();
virtual void onStarting() { startWorking(); }
virtual void onStopping() { stopWorking(); }
void continueSync(); /// Find something to do for all peers
void continueSync(EthereumPeer* _peer); /// Find some work to do for a peer
void onPeerDoneHashes(EthereumPeer* _peer, bool _new); /// Called when done downloading hashes from peer
void onPeerHashes(EthereumPeer* _peer, h256s const& _hashes, bool _complete);
bool peerShouldGrabBlocks(EthereumPeer* _peer) const;
bool peerShouldGrabChain(EthereumPeer* _peer) const;
bool peerCanHelp(EthereumPeer* _peer) const;
unsigned estimateHashes();
BlockChain const& m_chain;
TransactionQueue& m_tq; ///< Maintains a list of incoming transactions not yet in a block on the blockchain.
BlockQueue& m_bq; ///< Maintains a list of incoming blocks not yet on the blockchain (to be imported).
Handler m_bqRoomAvailable;
u256 m_networkId;
DownloadMan m_man;
HashDownloadMan m_hashMan;
h256 m_latestBlockSent;
h256Hash m_transactionsSent;
std::unordered_set m_banned;
bool m_newTransactions = false;
bool m_newBlocks = false;
mutable RecursiveMutex x_sync;
bool m_needSyncHashes = true; ///< Indicates if need to downlad hashes
bool m_needSyncBlocks = true; ///< Indicates if we still need to download some blocks
h256 m_syncingLatestHash; ///< Latest block's hash, as of the current sync.
u256 m_syncingTotalDifficulty; ///< Latest block's total difficulty, as of the current sync.
h256s m_hashes; ///< List of hashes with unknown block numbers. Used for PV60 chain downloading and catching up to a particular unknown
unsigned m_estimatedHashes = 0; ///< Number of estimated hashes for the last peer over PV60. Used for status reporting only.
bool m_syncingV61 = false; ///< True if recent activity was over pv61+. Used for status reporting only.
};
}
}