/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file Assembly.cpp
* @author Gav Wood
* @date 2014
*/
#include "Assembly.h"
#include
#include
using namespace std;
using namespace dev;
using namespace dev::eth;
unsigned AssemblyItem::bytesRequired(unsigned _addressLength) const
{
switch (m_type)
{
case Operation:
case Tag: // 1 byte for the JUMPDEST
return 1;
case PushString:
return 33;
case Push:
return 1 + max(1, dev::bytesRequired(m_data));
case PushSubSize:
case PushProgramSize:
return 4; // worst case: a 16MB program
case PushTag:
case PushData:
case PushSub:
return 1 + _addressLength;
case NoOptimizeBegin:
case NoOptimizeEnd:
return 0;
default:
break;
}
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
int AssemblyItem::deposit() const
{
switch (m_type)
{
case Operation:
return instructionInfo((Instruction)(byte)m_data).ret - instructionInfo((Instruction)(byte)m_data).args;
case Push:
case PushString:
case PushTag:
case PushData:
case PushSub:
case PushSubSize:
case PushProgramSize:
return 1;
case Tag:
return 0;
default:;
}
return 0;
}
string AssemblyItem::getJumpTypeAsString() const
{
switch (m_jumpType)
{
case JumpType::IntoFunction:
return "[in]";
case JumpType::OutOfFunction:
return "[out]";
case JumpType::Ordinary:
default:
return "";
}
}
unsigned Assembly::bytesRequired() const
{
for (unsigned br = 1;; ++br)
{
unsigned ret = 1;
for (auto const& i: m_data)
ret += i.second.size();
for (AssemblyItem const& i: m_items)
ret += i.bytesRequired(br);
if (dev::bytesRequired(ret) <= br)
return ret;
}
}
void Assembly::append(Assembly const& _a)
{
auto newDeposit = m_deposit + _a.deposit();
for (AssemblyItem i: _a.m_items)
{
if (i.type() == Tag || i.type() == PushTag)
i.m_data += m_usedTags;
else if (i.type() == PushSub || i.type() == PushSubSize)
i.m_data += m_subs.size();
append(i);
}
m_deposit = newDeposit;
m_usedTags += _a.m_usedTags;
for (auto const& i: _a.m_data)
m_data.insert(i);
for (auto const& i: _a.m_strings)
m_strings.insert(i);
for (auto const& i: _a.m_subs)
m_subs.push_back(i);
assert(!_a.m_baseDeposit);
assert(!_a.m_totalDeposit);
}
void Assembly::append(Assembly const& _a, int _deposit)
{
if (_deposit > _a.m_deposit)
BOOST_THROW_EXCEPTION(InvalidDeposit());
else
{
append(_a);
while (_deposit++ < _a.m_deposit)
append(Instruction::POP);
}
}
ostream& dev::eth::operator<<(ostream& _out, AssemblyItemsConstRef _i)
{
for (AssemblyItem const& i: _i)
switch (i.type())
{
case Operation:
_out << " " << instructionInfo((Instruction)(byte)i.data()).name;
break;
case Push:
_out << " PUSH" << i.data();
break;
case PushString:
_out << " PUSH'[" << hex << (unsigned)i.data() << "]";
break;
case PushTag:
_out << " PUSH[tag" << i.data() << "]";
break;
case Tag:
_out << " tag" << i.data() << ": JUMPDEST";
break;
case PushData:
_out << " PUSH*[" << hex << (unsigned)i.data() << "]";
break;
case PushSub:
_out << " PUSHs[" << hex << h256(i.data()).abridged() << "]";
break;
case PushSubSize:
_out << " PUSHss[" << hex << h256(i.data()).abridged() << "]";
break;
case PushProgramSize:
_out << " PUSHSIZE";
break;
case NoOptimizeBegin:
_out << " DoNotOptimze{{";
break;
case NoOptimizeEnd:
_out << " DoNotOptimze}}";
break;
case UndefinedItem:
_out << " ???";
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
return _out;
}
string Assembly::getLocationFromSources(StringMap const& _sourceCodes, SourceLocation const& _location) const
{
if (_location.isEmpty() || _sourceCodes.empty() || _location.start >= _location.end || _location.start < 0)
return "";
auto it = _sourceCodes.find(*_location.sourceName);
if (it == _sourceCodes.end())
return "";
string const& source = it->second;
if (size_t(_location.start) >= source.size())
return "";
string cut = source.substr(_location.start, _location.end - _location.start);
auto newLinePos = cut.find_first_of("\n");
if (newLinePos != string::npos)
cut = cut.substr(0, newLinePos) + "...";
return move(cut);
}
ostream& Assembly::stream(ostream& _out, string const& _prefix, StringMap const& _sourceCodes) const
{
_out << _prefix << ".code:" << endl;
for (AssemblyItem const& i: m_items)
{
_out << _prefix;
switch (i.m_type)
{
case Operation:
_out << " " << instructionInfo((Instruction)(byte)i.m_data).name << "\t" << i.getJumpTypeAsString();
break;
case Push:
_out << " PUSH " << i.m_data;
break;
case PushString:
_out << " PUSH \"" << m_strings.at((h256)i.m_data) << "\"";
break;
case PushTag:
_out << " PUSH [tag" << i.m_data << "]";
break;
case PushSub:
_out << " PUSH [$" << h256(i.m_data).abridged() << "]";
break;
case PushSubSize:
_out << " PUSH #[$" << h256(i.m_data).abridged() << "]";
break;
case PushProgramSize:
_out << " PUSHSIZE";
break;
case Tag:
_out << "tag" << i.m_data << ": " << endl << _prefix << " JUMPDEST";
break;
case PushData:
_out << " PUSH [" << hex << (unsigned)i.m_data << "]";
break;
case NoOptimizeBegin:
_out << "DoNotOptimze{{";
break;
case NoOptimizeEnd:
_out << "DoNotOptimze}}";
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
_out << "\t\t" << getLocationFromSources(_sourceCodes, i.getLocation()) << endl;
}
if (!m_data.empty() || !m_subs.empty())
{
_out << _prefix << ".data:" << endl;
for (auto const& i: m_data)
if (u256(i.first) >= m_subs.size())
_out << _prefix << " " << hex << (unsigned)(u256)i.first << ": " << toHex(i.second) << endl;
for (size_t i = 0; i < m_subs.size(); ++i)
{
_out << _prefix << " " << hex << i << ": " << endl;
m_subs[i].stream(_out, _prefix + " ", _sourceCodes);
}
}
return _out;
}
AssemblyItem const& Assembly::append(AssemblyItem const& _i)
{
m_deposit += _i.deposit();
m_items.push_back(_i);
if (m_items.back().getLocation().isEmpty() && !m_currentSourceLocation.isEmpty())
m_items.back().setLocation(m_currentSourceLocation);
return back();
}
void Assembly::injectStart(AssemblyItem const& _i)
{
m_items.insert(m_items.begin(), _i);
}
inline bool matches(AssemblyItemsConstRef _a, AssemblyItemsConstRef _b)
{
if (_a.size() != _b.size())
return false;
for (unsigned i = 0; i < _a.size(); ++i)
if (!_a[i].match(_b[i]))
return false;
return true;
}
inline bool popCountIncreased(AssemblyItemsConstRef _pre, AssemblyItems const& _post)
{
auto isPop = [](AssemblyItem const& _item) -> bool { return _item.match(AssemblyItem(Instruction::POP)); };
return count_if(begin(_post), end(_post), isPop) > count_if(begin(_pre), end(_pre), isPop);
}
//@todo this has to move to a special optimizer class soon
template
unsigned bytesRequiredBySlice(Iterator _begin, Iterator _end)
{
// this is only used in the optimizer, so we can provide a guess for the address length
unsigned addressLength = 4;
unsigned size = 0;
for (; _begin != _end; ++_begin)
size += _begin->bytesRequired(addressLength);
return size;
}
struct OptimiserChannel: public LogChannel { static const char* name() { return "OPT"; } static const int verbosity = 12; };
#define copt dev::LogOutputStream()
Assembly& Assembly::optimise(bool _enable)
{
if (!_enable)
return *this;
auto signextend = [](u256 a, u256 b) -> u256
{
if (a >= 31)
return b;
unsigned testBit = unsigned(a) * 8 + 7;
u256 mask = (u256(1) << testBit) - 1;
return boost::multiprecision::bit_test(b, testBit) ? b | ~mask : b & mask;
};
map> const c_simple =
{
{ Instruction::SUB, [](u256 a, u256 b)->u256{return a - b;} },
{ Instruction::DIV, [](u256 a, u256 b)->u256{return a / b;} },
{ Instruction::SDIV, [](u256 a, u256 b)->u256{return s2u(u2s(a) / u2s(b));} },
{ Instruction::MOD, [](u256 a, u256 b)->u256{return a % b;} },
{ Instruction::SMOD, [](u256 a, u256 b)->u256{return s2u(u2s(a) % u2s(b));} },
{ Instruction::EXP, [](u256 a, u256 b)->u256{return (u256)boost::multiprecision::powm((bigint)a, (bigint)b, bigint(1) << 256);} },
{ Instruction::SIGNEXTEND, signextend },
{ Instruction::LT, [](u256 a, u256 b)->u256{return a < b ? 1 : 0;} },
{ Instruction::GT, [](u256 a, u256 b)->u256{return a > b ? 1 : 0;} },
{ Instruction::SLT, [](u256 a, u256 b)->u256{return u2s(a) < u2s(b) ? 1 : 0;} },
{ Instruction::SGT, [](u256 a, u256 b)->u256{return u2s(a) > u2s(b) ? 1 : 0;} },
{ Instruction::EQ, [](u256 a, u256 b)->u256{return a == b ? 1 : 0;} },
};
map> const c_associative =
{
{ Instruction::ADD, [](u256 a, u256 b)->u256{return a + b;} },
{ Instruction::MUL, [](u256 a, u256 b)->u256{return a * b;} },
{ Instruction::AND, [](u256 a, u256 b)->u256{return a & b;} },
{ Instruction::OR, [](u256 a, u256 b)->u256{return a | b;} },
{ Instruction::XOR, [](u256 a, u256 b)->u256{return a ^ b;} },
};
std::vector> const c_identities =
{ { Instruction::ADD, 0}, { Instruction::MUL, 1}, { Instruction::MOD, 0}, { Instruction::OR, 0}, { Instruction::XOR, 0} };
std::vector>> rules =
{
{ { Push, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
{ { PushTag, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
{ { PushString, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
{ { PushSub, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
{ { PushSubSize, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
{ { PushProgramSize, Instruction::POP }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
{ { Push, PushTag, Instruction::JUMPI }, [](AssemblyItemsConstRef m) -> AssemblyItems { if (m[0].data()) return { m[1], Instruction::JUMP }; else return {}; } },
{ { Instruction::ISZERO, Instruction::ISZERO }, [](AssemblyItemsConstRef) -> AssemblyItems { return {}; } },
};
for (auto const& i: c_simple)
rules.push_back({ { Push, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[1].data(), m[0].data()) }; } });
for (auto const& i: c_associative)
{
rules.push_back({ { Push, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[1].data(), m[0].data()) }; } });
rules.push_back({ { Push, i.first, Push, i.first }, [&](AssemblyItemsConstRef m) -> AssemblyItems { return { i.second(m[2].data(), m[0].data()), i.first }; } });
}
for (auto const& i: c_identities)
rules.push_back({{Push, i.first}, [&](AssemblyItemsConstRef m) -> AssemblyItems
{ return m[0].data() == i.second ? AssemblyItems() : m.toVector(); }});
// jump to next instruction
rules.push_back({ { PushTag, Instruction::JUMP, Tag }, [](AssemblyItemsConstRef m) -> AssemblyItems { if (m[0].m_data == m[2].m_data) return {m[2]}; else return m.toVector(); }});
// pop optimization, do not compute values that are popped again anyway
rules.push_back({ { AssemblyItem(UndefinedItem), Instruction::POP }, [](AssemblyItemsConstRef m) -> AssemblyItems
{
if (m[0].type() != Operation)
return m.toVector();
Instruction instr = Instruction(byte(m[0].data()));
if (Instruction::DUP1 <= instr && instr <= Instruction::DUP16)
return {};
InstructionInfo info = instructionInfo(instr);
if (info.sideEffects || info.additional != 0 || info.ret != 1)
return m.toVector();
return AssemblyItems(info.args, Instruction::POP);
} });
// compute constants close to powers of two by expressions
auto computeConstants = [](AssemblyItemsConstRef m) -> AssemblyItems
{
u256 const& c = m[0].data();
unsigned const minBits = 4 * 8;
if (c < (bigint(1) << minBits))
return m.toVector(); // we need at least "PUSH1 PUSH1 <2> EXP"
if (c == u256(-1))
return {u256(0), Instruction::NOT};
for (unsigned bits = minBits; bits < 256; ++bits)
{
bigint const diff = c - (bigint(1) << bits);
if (abs(diff) > 0xff)
continue;
AssemblyItems powerOfTwo{u256(bits), u256(2), Instruction::EXP};
if (diff == 0)
return powerOfTwo;
return AssemblyItems{u256(abs(diff))} + powerOfTwo +
AssemblyItems{diff > 0 ? Instruction::ADD : Instruction::SUB};
}
return m.toVector();
};
rules.push_back({{Push}, computeConstants});
copt << *this;
unsigned total = 0;
for (unsigned count = 1; count > 0; total += count)
{
count = 0;
for (unsigned i = 0; i < m_items.size(); ++i)
{
if (m_items[i].type() == NoOptimizeBegin)
{
while (i < m_items.size() && m_items[i].type() != NoOptimizeEnd)
++i;
continue;
}
for (auto const& r: rules)
{
auto vr = AssemblyItemsConstRef(&m_items).cropped(i, r.first.size());
if (matches(vr, &r.first))
{
auto rw = r.second(vr);
unsigned const vrSizeInBytes = bytesRequiredBySlice(vr.begin(), vr.end());
unsigned const rwSizeInBytes = bytesRequiredBySlice(rw.begin(), rw.end());
if (rwSizeInBytes < vrSizeInBytes || (rwSizeInBytes == vrSizeInBytes && popCountIncreased(vr, rw)))
{
copt << vr << "matches" << AssemblyItemsConstRef(&r.first) << "becomes...";
copt << AssemblyItemsConstRef(&rw);
if (rw.size() > vr.size())
{
// create hole in the vector
unsigned sizeIncrease = rw.size() - vr.size();
m_items.resize(m_items.size() + sizeIncrease, AssemblyItem(UndefinedItem));
move_backward(m_items.begin() + i, m_items.end() - sizeIncrease, m_items.end());
}
else
m_items.erase(m_items.begin() + i + rw.size(), m_items.begin() + i + vr.size());
copy(rw.begin(), rw.end(), m_items.begin() + i);
count++;
copt << "Now:\n" << m_items;
}
}
}
if (m_items[i].type() == Operation && m_items[i].data() == (byte)Instruction::JUMP)
{
bool o = false;
while (m_items.size() > i + 1 && m_items[i + 1].type() != Tag)
{
if (m_items[i + 1].type() == NoOptimizeBegin)
break;
m_items.erase(m_items.begin() + i + 1);
o = true;
}
if (o)
{
copt << "Jump with no tag. Now:\n" << m_items;
++count;
}
}
}
map tags;
for (unsigned i = 0; i < m_items.size(); ++i)
if (m_items[i].type() == Tag)
tags.insert(make_pair(m_items[i].data(), i));
for (auto const& i: m_items)
if (i.type() == PushTag)
tags.erase(i.data());
if (!tags.empty())
{
auto t = *tags.begin();
unsigned i = t.second;
if (i && m_items[i - 1].type() == Operation && m_items[i - 1].data() == (byte)Instruction::JUMP)
while (i < m_items.size() && (m_items[i].type() != Tag || tags.count(m_items[i].data())))
{
if (m_items[i].type() == Tag && tags.count(m_items[i].data()))
tags.erase(m_items[i].data());
m_items.erase(m_items.begin() + i);
}
else
{
m_items.erase(m_items.begin() + i);
tags.erase(t.first);
}
copt << "Unused tag. Now:\n" << m_items;
++count;
}
}
copt << total << " optimisations done.";
for (auto& sub: m_subs)
sub.optimise(true);
return *this;
}
bytes Assembly::assemble() const
{
bytes ret;
unsigned totalBytes = bytesRequired();
vector tagPos(m_usedTags);
map tagRef;
multimap dataRef;
vector sizeRef; ///< Pointers to code locations where the size of the program is inserted
unsigned bytesPerTag = dev::bytesRequired(totalBytes);
byte tagPush = (byte)Instruction::PUSH1 - 1 + bytesPerTag;
for (size_t i = 0; i < m_subs.size(); ++i)
m_data[u256(i)] = m_subs[i].assemble();
unsigned bytesRequiredIncludingData = bytesRequired();
unsigned bytesPerDataRef = dev::bytesRequired(bytesRequiredIncludingData);
byte dataRefPush = (byte)Instruction::PUSH1 - 1 + bytesPerDataRef;
ret.reserve(bytesRequiredIncludingData);
// m_data must not change from here on
for (AssemblyItem const& i: m_items)
switch (i.m_type)
{
case Operation:
ret.push_back((byte)i.m_data);
break;
case PushString:
{
ret.push_back((byte)Instruction::PUSH32);
unsigned ii = 0;
for (auto j: m_strings.at((h256)i.m_data))
if (++ii > 32)
break;
else
ret.push_back((byte)j);
while (ii++ < 32)
ret.push_back(0);
break;
}
case Push:
{
byte b = max(1, dev::bytesRequired(i.m_data));
ret.push_back((byte)Instruction::PUSH1 - 1 + b);
ret.resize(ret.size() + b);
bytesRef byr(&ret.back() + 1 - b, b);
toBigEndian(i.m_data, byr);
break;
}
case PushTag:
{
ret.push_back(tagPush);
tagRef[ret.size()] = (unsigned)i.m_data;
ret.resize(ret.size() + bytesPerTag);
break;
}
case PushData: case PushSub:
{
ret.push_back(dataRefPush);
dataRef.insert(make_pair((h256)i.m_data, ret.size()));
ret.resize(ret.size() + bytesPerDataRef);
break;
}
case PushSubSize:
{
auto s = m_data[i.m_data].size();
byte b = max(1, dev::bytesRequired(s));
ret.push_back((byte)Instruction::PUSH1 - 1 + b);
ret.resize(ret.size() + b);
bytesRef byr(&ret.back() + 1 - b, b);
toBigEndian(s, byr);
break;
}
case PushProgramSize:
{
ret.push_back(dataRefPush);
sizeRef.push_back(ret.size());
ret.resize(ret.size() + bytesPerDataRef);
break;
}
case Tag:
tagPos[(unsigned)i.m_data] = ret.size();
ret.push_back((byte)Instruction::JUMPDEST);
break;
case NoOptimizeBegin:
case NoOptimizeEnd:
break;
default:
BOOST_THROW_EXCEPTION(InvalidOpcode());
}
for (auto const& i: tagRef)
{
bytesRef r(ret.data() + i.first, bytesPerTag);
toBigEndian(tagPos[i.second], r);
}
if (!m_data.empty())
{
ret.push_back(0);
for (auto const& i: m_data)
{
auto its = dataRef.equal_range(i.first);
if (its.first != its.second)
{
for (auto it = its.first; it != its.second; ++it)
{
bytesRef r(ret.data() + it->second, bytesPerDataRef);
toBigEndian(ret.size(), r);
}
for (auto b: i.second)
ret.push_back(b);
}
}
}
for (unsigned pos: sizeRef)
{
bytesRef r(ret.data() + pos, bytesPerDataRef);
toBigEndian(ret.size(), r);
}
return ret;
}