/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file State.cpp * @author Gav Wood * @date 2014 */ #include "State.h" #include #include #include #include #include "BlockChain.h" #include "Instruction.h" #include "Exceptions.h" #include "Dagger.h" #include "Defaults.h" #include "ExtVM.h" #include "VM.h" using namespace std; using namespace eth; u256 eth::c_genesisDifficulty = (u256)1 << 22; std::map const& eth::genesisState() { static std::map s_ret; if (s_ret.empty()) { // Initialise. s_ret[Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075"))] = AddressState(u256(1) << 200, 0, h256(), EmptySHA3); s_ret[Address(fromHex("e6716f9544a56c530d868e4bfbacb172315bdead"))] = AddressState(u256(1) << 200, 0, h256(), EmptySHA3); s_ret[Address(fromHex("1e12515ce3e0f817a4ddef9ca55788a1d66bd2df"))] = AddressState(u256(1) << 200, 0, h256(), EmptySHA3); s_ret[Address(fromHex("1a26338f0d905e295fccb71fa9ea849ffa12aaf4"))] = AddressState(u256(1) << 200, 0, h256(), EmptySHA3); } return s_ret; } Overlay State::openDB(std::string _path, bool _killExisting) { if (_path.empty()) _path = Defaults::get()->m_dbPath; boost::filesystem::create_directory(_path); if (_killExisting) boost::filesystem::remove_all(_path + "/state"); ldb::Options o; o.create_if_missing = true; ldb::DB* db = nullptr; ldb::DB::Open(o, _path + "/state", &db); return Overlay(db); } State::State(Address _coinbaseAddress, Overlay const& _db): m_db(_db), m_state(&m_db), m_transactionManifest(&m_db), m_ourAddress(_coinbaseAddress) { m_blockReward = 1500 * finney; secp256k1_start(); // Initialise to the state entailed by the genesis block; this guarantees the trie is built correctly. m_state.init(); eth::commit(genesisState(), m_db, m_state); // cnote << "State root: " << m_state.root(); m_previousBlock = BlockInfo::genesis(); // cnote << "Genesis hash:" << m_previousBlock.hash; resetCurrent(); assert(m_state.root() == m_previousBlock.stateRoot); } State::State(State const& _s): m_db(_s.m_db), m_state(&m_db, _s.m_state.root()), m_transactions(_s.m_transactions), m_transactionSet(_s.m_transactionSet), m_transactionManifest(&m_db, _s.m_transactionManifest.root()), m_cache(_s.m_cache), m_previousBlock(_s.m_previousBlock), m_currentBlock(_s.m_currentBlock), m_ourAddress(_s.m_ourAddress), m_blockReward(_s.m_blockReward) { } State& State::operator=(State const& _s) { m_db = _s.m_db; m_state.open(&m_db, _s.m_state.root()); m_transactions = _s.m_transactions; m_transactionSet = _s.m_transactionSet; m_transactionManifest.open(&m_db, _s.m_transactionManifest.root()); m_cache = _s.m_cache; m_previousBlock = _s.m_previousBlock; m_currentBlock = _s.m_currentBlock; m_ourAddress = _s.m_ourAddress; m_blockReward = _s.m_blockReward; return *this; } void State::ensureCached(Address _a, bool _requireCode, bool _forceCreate) const { ensureCached(m_cache, _a, _requireCode, _forceCreate); } void State::ensureCached(std::map& _cache, Address _a, bool _requireCode, bool _forceCreate) const { auto it = _cache.find(_a); if (it == _cache.end()) { // populate basic info. string stateBack = m_state.at(_a); if (stateBack.empty() && !_forceCreate) return; RLP state(stateBack); AddressState s; if (state.isNull()) s = AddressState(0, 0, h256(), EmptySHA3); else s = AddressState(state[0].toInt(), state[1].toInt(), state[2].toHash(), state[3].toHash()); bool ok; tie(it, ok) = _cache.insert(make_pair(_a, s)); } if (_requireCode && it != _cache.end() && !it->second.isFreshCode() && !it->second.codeCacheValid()) it->second.noteCode(it->second.codeHash() == EmptySHA3 ? bytesConstRef() : bytesConstRef(m_db.lookup(it->second.codeHash()))); } void State::commit() { eth::commit(m_cache, m_db, m_state); m_cache.clear(); } bool State::sync(BlockChain const& _bc) { return sync(_bc, _bc.currentHash()); } bool State::sync(BlockChain const& _bc, h256 _block) { bool ret = false; // BLOCK BlockInfo bi; try { auto b = _bc.block(_block); bi.populate(b); bi.verifyInternals(_bc.block(_block)); } catch (...) { // TODO: Slightly nicer handling? :-) cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl; exit(1); } if (bi == m_currentBlock) { // We mined the last block. // Our state is good - we just need to move on to next. m_previousBlock = m_currentBlock; resetCurrent(); ret = true; } else if (bi == m_previousBlock) { // No change since last sync. // Carry on as we were. } else { // New blocks available, or we've switched to a different branch. All change. // Find most recent state dump and replay what's left. // (Most recent state dump might end up being genesis.) std::vector chain; while (bi.stateRoot != BlockInfo::genesis().hash && m_db.lookup(bi.stateRoot).empty()) // while we don't have the state root of the latest block... { chain.push_back(bi.hash); // push back for later replay. bi.populate(_bc.block(bi.parentHash)); // move to parent. } m_previousBlock = bi; resetCurrent(); // Iterate through in reverse, playing back each of the blocks. for (auto it = chain.rbegin(); it != chain.rend(); ++it) trustedPlayback(_bc.block(*it), true); resetCurrent(); ret = true; } return ret; } map State::addresses() const { map ret; for (auto i: m_cache) if (i.second.isAlive()) ret[i.first] = i.second.balance(); for (auto const& i: m_state) if (m_cache.find(i.first) == m_cache.end()) ret[i.first] = RLP(i.second)[0].toInt(); return ret; } void State::resetCurrent() { m_transactions.clear(); m_transactionSet.clear(); m_transactionManifest.init(); m_cache.clear(); m_currentBlock = BlockInfo(); m_currentBlock.coinbaseAddress = m_ourAddress; m_currentBlock.timestamp = time(0); m_currentBlock.transactionsRoot = h256(); m_currentBlock.sha3Uncles = h256(); m_currentBlock.minGasPrice = 10 * szabo; m_currentBlock.populateFromParent(m_previousBlock); // Update timestamp according to clock. // TODO: check. m_state.setRoot(m_currentBlock.stateRoot); } bool State::cull(TransactionQueue& _tq) const { bool ret = false; auto ts = _tq.transactions(); for (auto const& i: ts) { if (!m_transactionSet.count(i.first)) { try { Transaction t(i.second); if (t.nonce <= transactionsFrom(t.sender())) { _tq.drop(i.first); ret = true; } } catch (...) { _tq.drop(i.first); ret = true; } } } return ret; } bool State::sync(TransactionQueue& _tq, bool* _changed) { // TRANSACTIONS bool ret = false; auto ts = _tq.transactions(); vector> futures; for (int goodTxs = 1; goodTxs;) { goodTxs = 0; for (auto const& i: ts) { if (!m_transactionSet.count(i.first)) { // don't have it yet! Execute it now. try { ret = true; uncommitToMine(); execute(i.second); if (_changed) *_changed = true; _tq.noteGood(i); ++goodTxs; } catch (InvalidNonce const& in) { if (in.required > in.candidate) { // too old _tq.drop(i.first); if (_changed) *_changed = true; } else _tq.setFuture(i); } catch (std::exception const&) { // Something else went wrong - drop it. _tq.drop(i.first); if (_changed) *_changed = true; } } } } return ret; } u256 State::playback(bytesConstRef _block, BlockInfo const& _bi, BlockInfo const& _parent, BlockInfo const& _grandParent, bool _fullCommit) { resetCurrent(); m_currentBlock = _bi; m_previousBlock = _parent; return playbackRaw(_block, _grandParent, _fullCommit); } u256 State::trustedPlayback(bytesConstRef _block, bool _fullCommit) { try { m_currentBlock.populate(_block); m_currentBlock.verifyInternals(_block); return playbackRaw(_block, BlockInfo(), _fullCommit); } catch (...) { // TODO: Slightly nicer handling? :-) cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl; exit(1); } } u256 State::playbackRaw(bytesConstRef _block, BlockInfo const& _grandParent, bool _fullCommit) { // m_currentBlock is assumed to be prepopulated. if (m_currentBlock.parentHash != m_previousBlock.hash) throw InvalidParentHash(); // cnote << "playback begins:" << m_state.root(); // cnote << m_state; if (_fullCommit) m_transactionManifest.init(); // All ok with the block generally. Play back the transactions now... unsigned i = 0; for (auto const& tr: RLP(_block)[1]) { // cnote << m_state.root() << m_state; // cnote << *this; execute(tr[0].data()); if (tr[1].toInt() != m_state.root()) { // Invalid state root cnote << m_state.root() << "\n" << m_state; cnote << *this; cnote << "INVALID: " << hex << tr[1].toInt(); throw InvalidTransactionStateRoot(); } if (tr[2].toInt() != gasUsed()) throw InvalidTransactionGasUsed(); if (_fullCommit) { bytes k = rlp(i); m_transactionManifest.insert(&k, tr.data()); } ++i; } // Initialise total difficulty calculation. u256 tdIncrease = m_currentBlock.difficulty; // Check uncles & apply their rewards to state. // TODO: Check for uniqueness of uncles. set nonces = { m_currentBlock.nonce }; Addresses rewarded; for (auto const& i: RLP(_block)[2]) { BlockInfo uncle = BlockInfo::fromHeader(i.data()); if (m_previousBlock.parentHash != uncle.parentHash) throw UncleNotAnUncle(); if (nonces.count(uncle.nonce)) throw DuplicateUncleNonce(); if (_grandParent) uncle.verifyParent(_grandParent); nonces.insert(uncle.nonce); tdIncrease += uncle.difficulty; rewarded.push_back(uncle.coinbaseAddress); } applyRewards(rewarded); // Commit all cached state changes to the state trie. commit(); // Hash the state trie and check against the state_root hash in m_currentBlock. if (m_currentBlock.stateRoot != rootHash()) { cwarn << "Bad state root!"; cnote << "Given to be:" << m_currentBlock.stateRoot; cnote << TrieDB(&m_db, m_currentBlock.stateRoot); cnote << "Calculated to be:" << rootHash(); cnote << m_state; cnote << *this; // Rollback the trie. m_db.rollback(); throw InvalidStateRoot(); } if (_fullCommit) { // Commit the new trie to disk. m_db.commit(); m_previousBlock = m_currentBlock; } else { m_db.rollback(); } resetCurrent(); return tdIncrease; } void State::uncommitToMine() { if (m_currentBlock.sha3Uncles != h256()) { // cnote << "Unapplying rewards: " << balance(m_currentBlock.coinbaseAddress); Addresses uncleAddresses; for (auto i: RLP(m_currentUncles)) uncleAddresses.push_back(i[2].toHash
()); unapplyRewards(uncleAddresses); // cnote << "Unapplied rewards: " << balance(m_currentBlock.coinbaseAddress); m_currentBlock.sha3Uncles = h256(); } } // @returns the block that represents the difference between m_previousBlock and m_currentBlock. // (i.e. all the transactions we executed). void State::commitToMine(BlockChain const& _bc) { uncommitToMine(); cnote << "Commiting to mine on" << m_previousBlock.hash; RLPStream uncles; Addresses uncleAddresses; if (m_previousBlock != BlockInfo::genesis()) { // Find uncles if we're not a direct child of the genesis. // cout << "Checking " << m_previousBlock.hash << ", parent=" << m_previousBlock.parentHash << endl; auto us = _bc.details(m_previousBlock.parentHash).children; assert(us.size() >= 1); // must be at least 1 child of our grandparent - it's our own parent! uncles.appendList(us.size() - 1); // one fewer - uncles precludes our parent from the list of grandparent's children. for (auto const& u: us) if (u != m_previousBlock.hash) // ignore our own parent - it's not an uncle. { BlockInfo ubi(_bc.block(u)); ubi.fillStream(uncles, true); uncleAddresses.push_back(ubi.coinbaseAddress); } } else uncles.appendList(0); // cnote << *this; applyRewards(uncleAddresses); if (m_transactionManifest.isNull()) m_transactionManifest.init(); else while(!m_transactionManifest.isEmpty()) m_transactionManifest.remove((*m_transactionManifest.begin()).first); // cnote << *this; RLPStream txs; txs.appendList(m_transactions.size()); for (unsigned i = 0; i < m_transactions.size(); ++i) { RLPStream k; k << i; RLPStream v; m_transactions[i].fillStream(v); m_transactionManifest.insert(&k.out(), &v.out()); txs.appendRaw(v.out()); } txs.swapOut(m_currentTxs); uncles.swapOut(m_currentUncles); m_currentBlock.transactionsRoot = m_transactionManifest.root(); m_currentBlock.sha3Uncles = sha3(m_currentUncles); // Commit any and all changes to the trie that are in the cache, then update the state root accordingly. commit(); cnote << "stateRoot:" << m_state.root(); // cnote << m_state; // cnote << *this; m_currentBlock.gasUsed = gasUsed(); m_currentBlock.stateRoot = m_state.root(); m_currentBlock.parentHash = m_previousBlock.hash; } MineInfo State::mine(uint _msTimeout) { // Update difficulty according to timestamp. m_currentBlock.difficulty = m_currentBlock.calculateDifficulty(m_previousBlock); // TODO: Miner class that keeps dagger between mine calls (or just non-polling mining). MineInfo ret = m_dagger.mine(/*out*/m_currentBlock.nonce, m_currentBlock.headerHashWithoutNonce(), m_currentBlock.difficulty, _msTimeout); if (ret.completed) { // Got it! // Commit to disk. m_db.commit(); // Compile block: RLPStream ret; ret.appendList(3); m_currentBlock.fillStream(ret, true); ret.appendRaw(m_currentTxs); ret.appendRaw(m_currentUncles); ret.swapOut(m_currentBytes); m_currentBlock.hash = sha3(m_currentBytes); cnote << "Mined " << m_currentBlock.hash << "(parent: " << m_currentBlock.parentHash << ")"; } else m_currentBytes.clear(); return ret; } bool State::addressInUse(Address _id) const { ensureCached(_id, false, false); auto it = m_cache.find(_id); if (it == m_cache.end()) return false; return true; } bool State::addressHasCode(Address _id) const { ensureCached(_id, false, false); auto it = m_cache.find(_id); if (it == m_cache.end()) return false; return it->second.isFreshCode() || it->second.codeHash() != EmptySHA3; } u256 State::balance(Address _id) const { ensureCached(_id, false, false); auto it = m_cache.find(_id); if (it == m_cache.end()) return 0; return it->second.balance(); } void State::noteSending(Address _id) { ensureCached(_id, false, false); auto it = m_cache.find(_id); if (it == m_cache.end()) m_cache[_id] = AddressState(0, 1, h256(), EmptySHA3); else it->second.incNonce(); } void State::addBalance(Address _id, u256 _amount) { ensureCached(_id, false, false); auto it = m_cache.find(_id); if (it == m_cache.end()) m_cache[_id] = AddressState(_amount, 0, h256(), EmptySHA3); else it->second.addBalance(_amount); } void State::subBalance(Address _id, bigint _amount) { ensureCached(_id, false, false); auto it = m_cache.find(_id); if (it == m_cache.end() || (bigint)it->second.balance() < _amount) throw NotEnoughCash(); else it->second.addBalance(-_amount); } u256 State::transactionsFrom(Address _id) const { ensureCached(_id, false, false); auto it = m_cache.find(_id); if (it == m_cache.end()) return 0; else return it->second.nonce(); } u256 State::storage(Address _id, u256 _memory) const { ensureCached(_id, false, false); auto it = m_cache.find(_id); // Account doesn't exist - exit now. if (it == m_cache.end()) return 0; // See if it's in the account's storage cache. auto mit = it->second.storage().find(_memory); if (mit != it->second.storage().end()) return mit->second; // Not in the storage cache - go to the DB. TrieDB memdb(const_cast(&m_db), it->second.oldRoot()); // promise we won't change the overlay! :) string payload = memdb.at(_memory); u256 ret = payload.size() ? RLP(payload).toInt() : 0; it->second.setStorage(_memory, ret); return ret; } map State::storage(Address _id) const { map ret; ensureCached(_id, false, false); auto it = m_cache.find(_id); if (it != m_cache.end()) { // Pull out all values from trie storage. if (it->second.oldRoot()) { TrieDB memdb(const_cast(&m_db), it->second.oldRoot()); // promise we won't alter the overlay! :) ret = it->second.storage(); for (auto const& i: memdb) ret[i.first] = RLP(i.second).toInt(); } // Then merge cached storage over the top. for (auto const& i: it->second.storage()) if (i.second) ret.insert(i); else ret.erase(i.first); } return ret; } bytes const& State::code(Address _contract) const { if (!addressHasCode(_contract)) return NullBytes; ensureCached(_contract, true, false); return m_cache[_contract].code(); } u256 State::execute(bytesConstRef _rlp) { Executive e(*this); e.setup(_rlp); cnote << "Executing " << e.t(); // cnote << m_state.root() << "\n" << m_state; cnote << *this; u256 startGasUSed = gasUsed(); if (startGasUSed + e.t().gas > m_currentBlock.gasLimit) throw BlockGasLimitReached(); // TODO: make sure this is handled. e.go(); e.finalize(); cnote << "Executed."; // cnote << m_state.root() << "\n" << m_state; cnote << *this; commit(); cnote << "Committed."; // cnote << m_state.root() << "\n" << m_state; cnote << *this; // Add to the user-originated transactions that we've executed. m_transactions.push_back(TransactionReceipt(e.t(), m_state.root(), startGasUSed + e.gasUsed())); m_transactionSet.insert(e.t().sha3()); return e.gasUsed(); } bool State::call(Address _receiveAddress, Address _senderAddress, u256 _value, u256 _gasPrice, bytesConstRef _data, u256* _gas, bytesRef _out, Address _originAddress) { if (!_originAddress) _originAddress = _senderAddress; // cnote << "Transferring" << formatBalance(_value) << "to receiver."; addBalance(_receiveAddress, _value); if (addressHasCode(_receiveAddress)) { VM vm(*_gas); ExtVM evm(*this, _receiveAddress, _senderAddress, _originAddress, _value, _gasPrice, _data, &code(_receiveAddress)); bool revert = false; try { auto out = vm.go(evm); memcpy(_out.data(), out.data(), std::min(out.size(), _out.size())); } catch (OutOfGas const& /*_e*/) { clog(StateChat) << "Out of Gas! Reverting."; revert = true; } catch (VMException const& _e) { clog(StateChat) << "VM Exception: " << _e.description(); } catch (Exception const& _e) { clog(StateChat) << "Exception in VM: " << _e.description(); } catch (std::exception const& _e) { clog(StateChat) << "std::exception in VM: " << _e.what(); } // Write state out only in the case of a non-excepted transaction. if (revert) evm.revert(); *_gas = vm.gas(); return !revert; } return true; } h160 State::create(Address _sender, u256 _endowment, u256 _gasPrice, u256* _gas, bytesConstRef _code, Address _origin) { if (!_origin) _origin = _sender; Address newAddress = right160(sha3(rlpList(_sender, transactionsFrom(_sender) - 1))); while (addressInUse(newAddress)) newAddress = (u160)newAddress + 1; // Set up new account... m_cache[newAddress] = AddressState(0, 0, h256(), h256()); // Execute _init. VM vm(*_gas); ExtVM evm(*this, newAddress, _sender, _origin, _endowment, _gasPrice, bytesConstRef(), _code); bool revert = false; bytesConstRef out; try { out = vm.go(evm); } catch (OutOfGas const& /*_e*/) { clog(StateChat) << "Out of Gas! Reverting."; revert = true; } catch (VMException const& _e) { clog(StateChat) << "VM Exception: " << _e.description(); } catch (Exception const& _e) { clog(StateChat) << "Exception in VM: " << _e.description(); } catch (std::exception const& _e) { clog(StateChat) << "std::exception in VM: " << _e.what(); } // Write state out only in the case of a non-out-of-gas transaction. if (revert) evm.revert(); // Kill contract if there's no code. if (out.empty()) { m_cache.erase(newAddress); newAddress = Address(); } else m_cache[newAddress].setCode(out); *_gas = vm.gas(); return newAddress; } void State::applyRewards(Addresses const& _uncleAddresses) { u256 r = m_blockReward; for (auto const& i: _uncleAddresses) { addBalance(i, m_blockReward * 3 / 4); r += m_blockReward / 8; } addBalance(m_currentBlock.coinbaseAddress, r); } void State::unapplyRewards(Addresses const& _uncleAddresses) { u256 r = m_blockReward; for (auto const& i: _uncleAddresses) { subBalance(i, m_blockReward * 3 / 4); r += m_blockReward / 8; } subBalance(m_currentBlock.coinbaseAddress, r); } std::ostream& eth::operator<<(std::ostream& _out, State const& _s) { _out << "--- " << _s.rootHash() << std::endl; std::set
d; std::set
dtr; auto trie = TrieDB(const_cast(&_s.m_db), _s.rootHash()); for (auto i: trie) d.insert(i.first), dtr.insert(i.first); for (auto i: _s.m_cache) d.insert(i.first); for (auto i: d) { auto it = _s.m_cache.find(i); AddressState* cache = it != _s.m_cache.end() ? &it->second : nullptr; auto rlpString = trie.at(i); RLP r(dtr.count(i) ? rlpString : ""); assert(cache || r); if (cache && !cache->isAlive()) _out << "XXX " << i << std::endl; else { string lead = (cache ? r ? " * " : " + " : " "); if (cache && r && (cache->balance() == r[0].toInt() && cache->nonce() == r[1].toInt())) lead = " . "; stringstream contout; if ((!cache || cache->codeBearing()) && (!r || r[3].toHash() != EmptySHA3)) { std::map mem; std::set back; std::set delta; std::set cached; if (r) { TrieDB memdb(const_cast(&_s.m_db), r[2].toHash()); // promise we won't alter the overlay! :) for (auto const& j: memdb) mem[j.first] = RLP(j.second).toInt(), back.insert(j.first); } if (cache) for (auto const& j: cache->storage()) if ((!mem.count(j.first) && j.second) || (mem.count(j.first) && mem.at(j.first) != j.second)) mem[j.first] = j.second, delta.insert(j.first); else if (j.second) cached.insert(j.first); if (delta.size()) lead = (lead == " . ") ? "*.* " : "*** "; contout << " @:"; if (delta.size()) contout << "???"; else contout << r[2].toHash(); contout << " $:" << (cache ? cache->isFreshCode() ? h256() : cache->codeHash() : r[3].toHash()); for (auto const& j: mem) if (j.second) contout << std::endl << (delta.count(j.first) ? back.count(j.first) ? " * " : " + " : cached.count(j.first) ? " . " : " ") << std::hex << std::setw(64) << j.first << ": " << std::setw(0) << j.second ; else contout << std::endl << "XXX " << std::hex << std::setw(64) << j.first << ""; } else contout << " [SIMPLE]"; _out << lead << i << ": " << std::dec << (cache ? cache->balance() : r[0].toInt()) << " #:" << (cache ? cache->nonce() : r[1].toInt()) << contout.str() << std::endl; } } return _out; }