/********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_FIELD_IMPL_H_ #define _SECP256K1_FIELD_IMPL_H_ #if defined HAVE_CONFIG_H #include "libsecp256k1-config.h" #endif #include "util.h" #if defined(USE_FIELD_10X26) #include "field_10x26_impl.h" #elif defined(USE_FIELD_5X52) #include "field_5x52_impl.h" #else #error "Please select field implementation" #endif SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) { secp256k1_fe_t na; secp256k1_fe_negate(&na, a, 1); secp256k1_fe_add(&na, b); return secp256k1_fe_normalizes_to_zero_var(&na); } static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) { secp256k1_fe_t x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; int j; /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in * { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: * 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] */ secp256k1_fe_sqr(&x2, a); secp256k1_fe_mul(&x2, &x2, a); secp256k1_fe_sqr(&x3, &x2); secp256k1_fe_mul(&x3, &x3, a); x6 = x3; for (j=0; j<3; j++) { secp256k1_fe_sqr(&x6, &x6); } secp256k1_fe_mul(&x6, &x6, &x3); x9 = x6; for (j=0; j<3; j++) { secp256k1_fe_sqr(&x9, &x9); } secp256k1_fe_mul(&x9, &x9, &x3); x11 = x9; for (j=0; j<2; j++) { secp256k1_fe_sqr(&x11, &x11); } secp256k1_fe_mul(&x11, &x11, &x2); x22 = x11; for (j=0; j<11; j++) { secp256k1_fe_sqr(&x22, &x22); } secp256k1_fe_mul(&x22, &x22, &x11); x44 = x22; for (j=0; j<22; j++) { secp256k1_fe_sqr(&x44, &x44); } secp256k1_fe_mul(&x44, &x44, &x22); x88 = x44; for (j=0; j<44; j++) { secp256k1_fe_sqr(&x88, &x88); } secp256k1_fe_mul(&x88, &x88, &x44); x176 = x88; for (j=0; j<88; j++) { secp256k1_fe_sqr(&x176, &x176); } secp256k1_fe_mul(&x176, &x176, &x88); x220 = x176; for (j=0; j<44; j++) { secp256k1_fe_sqr(&x220, &x220); } secp256k1_fe_mul(&x220, &x220, &x44); x223 = x220; for (j=0; j<3; j++) { secp256k1_fe_sqr(&x223, &x223); } secp256k1_fe_mul(&x223, &x223, &x3); /* The final result is then assembled using a sliding window over the blocks. */ t1 = x223; for (j=0; j<23; j++) { secp256k1_fe_sqr(&t1, &t1); } secp256k1_fe_mul(&t1, &t1, &x22); for (j=0; j<6; j++) { secp256k1_fe_sqr(&t1, &t1); } secp256k1_fe_mul(&t1, &t1, &x2); secp256k1_fe_sqr(&t1, &t1); secp256k1_fe_sqr(r, &t1); /* Check that a square root was actually calculated */ secp256k1_fe_sqr(&t1, r); return secp256k1_fe_equal_var(&t1, a); } static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) { secp256k1_fe_t x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1; int j; /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in * { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block: * [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223] */ secp256k1_fe_sqr(&x2, a); secp256k1_fe_mul(&x2, &x2, a); secp256k1_fe_sqr(&x3, &x2); secp256k1_fe_mul(&x3, &x3, a); x6 = x3; for (j=0; j<3; j++) { secp256k1_fe_sqr(&x6, &x6); } secp256k1_fe_mul(&x6, &x6, &x3); x9 = x6; for (j=0; j<3; j++) { secp256k1_fe_sqr(&x9, &x9); } secp256k1_fe_mul(&x9, &x9, &x3); x11 = x9; for (j=0; j<2; j++) { secp256k1_fe_sqr(&x11, &x11); } secp256k1_fe_mul(&x11, &x11, &x2); x22 = x11; for (j=0; j<11; j++) { secp256k1_fe_sqr(&x22, &x22); } secp256k1_fe_mul(&x22, &x22, &x11); x44 = x22; for (j=0; j<22; j++) { secp256k1_fe_sqr(&x44, &x44); } secp256k1_fe_mul(&x44, &x44, &x22); x88 = x44; for (j=0; j<44; j++) { secp256k1_fe_sqr(&x88, &x88); } secp256k1_fe_mul(&x88, &x88, &x44); x176 = x88; for (j=0; j<88; j++) { secp256k1_fe_sqr(&x176, &x176); } secp256k1_fe_mul(&x176, &x176, &x88); x220 = x176; for (j=0; j<44; j++) { secp256k1_fe_sqr(&x220, &x220); } secp256k1_fe_mul(&x220, &x220, &x44); x223 = x220; for (j=0; j<3; j++) { secp256k1_fe_sqr(&x223, &x223); } secp256k1_fe_mul(&x223, &x223, &x3); /* The final result is then assembled using a sliding window over the blocks. */ t1 = x223; for (j=0; j<23; j++) { secp256k1_fe_sqr(&t1, &t1); } secp256k1_fe_mul(&t1, &t1, &x22); for (j=0; j<5; j++) { secp256k1_fe_sqr(&t1, &t1); } secp256k1_fe_mul(&t1, &t1, a); for (j=0; j<3; j++) { secp256k1_fe_sqr(&t1, &t1); } secp256k1_fe_mul(&t1, &t1, &x2); for (j=0; j<2; j++) { secp256k1_fe_sqr(&t1, &t1); } secp256k1_fe_mul(r, a, &t1); } static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) { #if defined(USE_FIELD_INV_BUILTIN) secp256k1_fe_inv(r, a); #elif defined(USE_FIELD_INV_NUM) secp256k1_num_t n, m; /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ static const unsigned char prime[32] = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F }; unsigned char b[32]; secp256k1_fe_t c = *a; secp256k1_fe_normalize_var(&c); secp256k1_fe_get_b32(b, &c); secp256k1_num_set_bin(&n, b, 32); secp256k1_num_set_bin(&m, prime, 32); secp256k1_num_mod_inverse(&n, &n, &m); secp256k1_num_get_bin(b, 32, &n); VERIFY_CHECK(secp256k1_fe_set_b32(r, b)); #else #error "Please select field inverse implementation" #endif } static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp256k1_fe_t *a) { secp256k1_fe_t u; size_t i; if (len < 1) { return; } VERIFY_CHECK((r + len <= a) || (a + len <= r)); r[0] = a[0]; i = 0; while (++i < len) { secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]); } secp256k1_fe_inv_var(&u, &r[--i]); while (i > 0) { int j = i--; secp256k1_fe_mul(&r[j], &r[i], &u); secp256k1_fe_mul(&u, &u, &a[j]); } r[0] = u; } #endif