/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Foobar is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar. If not, see .
*/
/** @file State.cpp
* @author Gav Wood
* @date 2014
*/
#include
#include
#include "sha256.h"
#include "Trie.h"
#include "BlockChain.h"
#include "Instruction.h"
#include "Exceptions.h"
#include "State.h"
using namespace std;
using namespace eth;
u256 const State::c_stepFee = 0;
u256 const State::c_dataFee = 0;
u256 const State::c_memoryFee = 0;
u256 const State::c_extroFee = 0;
u256 const State::c_cryptoFee = 0;
u256 const State::c_newContractFee = 0;
u256 const State::c_txFee = 0;
State::State(Address _minerAddress): m_minerAddress(_minerAddress)
{
secp256k1_start();
m_previousBlock = BlockInfo::genesis();
m_currentBlock.number = 1;
}
void State::sync(BlockChain const& _bc, TransactionQueue const& _tq)
{
BlockInfo bi;
try
{
bi.populate(_bc.lastBlock(), _bc.lastBlockNumber());
bi.verifyInternals(_bc.lastBlock());
}
catch (...)
{
cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
exit(1);
}
if (bi == m_currentBlock)
{
// We mined the last block.
// Our state is good - we just need to move on to next.
m_previousBlock = m_currentBlock;
m_current.clear();
m_transactions.clear();
m_currentBlock = BlockInfo();
m_currentBlock.number = m_previousBlock.number + 1;
}
else if (bi == m_previousBlock)
{
// No change since last sync.
// Carry on as we were.
}
else
{
// New blocks available, or we've switched to a different branch. All change.
// TODO: Find most recent state dump and replay what's left.
// (Most recent state dump might end up being genesis.)
}
}
bool State::mine(uint _msTimeout) const
{
// TODO: update timestamp according to clock.
// TODO: update difficulty according to timestamp.
// TODO: look for a nonce that makes a good hash.
// ...but don't take longer than _msTimeout ms.
return false;
}
bool State::isNormalAddress(Address _address) const
{
auto it = m_current.find(_address);
return it != m_current.end() && it->second.type() == AddressType::Normal;
}
bool State::isContractAddress(Address _address) const
{
auto it = m_current.find(_address);
return it != m_current.end() && it->second.type() == AddressType::Contract;
}
u256 State::balance(Address _id) const
{
auto it = m_current.find(_id);
return it == m_current.end() ? 0 : it->second.balance();
}
void State::addBalance(Address _id, u256 _amount)
{
auto it = m_current.find(_id);
if (it == m_current.end())
it->second.balance() = _amount;
else
it->second.balance() += _amount;
}
void State::subBalance(Address _id, bigint _amount)
{
auto it = m_current.find(_id);
if (it == m_current.end() || (bigint)it->second.balance() < _amount)
throw NotEnoughCash();
it->second.balance() = (u256)((bigint)it->second.balance() - _amount);
}
u256 State::transactionsFrom(Address _address) const
{
auto it = m_current.find(_address);
return it == m_current.end() ? 0 : it->second.nonce();
}
u256 State::contractMemory(Address _contract, u256 _memory) const
{
auto m = m_current.find(_contract);
if (m == m_current.end())
return 0;
auto i = m->second.memory().find(_memory);
return i == m->second.memory().end() ? 0 : i->second;
}
void State::execute(Transaction const& _t, Address _sender)
{
// Entry point for a contract-originated transaction.
// Ignore invalid transactions.
if (_t.nonce != transactionsFrom(_sender))
throw InvalidNonce();
// Add to the transactions in
m_transactions.push_back(_t);
// Not considered invalid - just pointless.
if (balance(_sender) < _t.value + _t.fee)
throw NotEnoughCash();
if (_t.receiveAddress)
{
subBalance(_sender, _t.value + _t.fee);
addBalance(_t.receiveAddress, _t.value);
addBalance(m_minerAddress, _t.fee);
if (isContractAddress(_t.receiveAddress))
{
MinerFeeAdder feeAdder({this, 0}); // will add fee on destruction.
execute(_t.receiveAddress, _sender, _t.value, _t.fee, _t.data, &feeAdder.fee);
}
}
else
{
if (_t.fee < _t.data.size() * c_memoryFee + c_newContractFee)
throw FeeTooSmall();
Address newAddress = low160(_t.sha3());
if (isContractAddress(newAddress))
throw ContractAddressCollision();
auto& mem = m_current[newAddress].memory();
for (uint i = 0; i < _t.data.size(); ++i)
mem[i] = _t.data[i];
subBalance(_sender, _t.value + _t.fee);
addBalance(newAddress, _t.value);
addBalance(m_minerAddress, _t.fee);
}
}
void State::execute(Address _myAddress, Address _txSender, u256 _txValue, u256 _txFee, u256s const& _txData, u256* _totalFee)
{
std::vector stack;
// Find our memory.
auto m = m_current.find(_myAddress);
if (m == m_current.end())
throw NoSuchContract();
auto& myMemory = m->second.memory();
// Set up some local functions.
auto require = [&](u256 _n)
{
if (stack.size() < _n)
throw StackTooSmall(_n, stack.size());
};
auto mem = [&](u256 _n) -> u256
{
auto i = myMemory.find(_n);
return i == myMemory.end() ? 0 : i->second;
};
auto setMem = [&](u256 _n, u256 _v)
{
if (_v)
myMemory[_n] = _v;
else
myMemory.erase(_n);
};
u256 curPC = 0;
u256 nextPC = 1;
u256 stepCount = 0;
for (bool stopped = false; !stopped; curPC = nextPC, nextPC = curPC + 1)
{
stepCount++;
bigint minerFee = stepCount > 16 ? c_stepFee : 0;
bigint voidFee = 0;
auto rawInst = mem(curPC);
if (rawInst > 0xff)
throw BadInstruction();
Instruction inst = (Instruction)(uint8_t)rawInst;
switch (inst)
{
case Instruction::STORE:
require(2);
if (!mem(stack.back()) && stack[stack.size() - 2])
voidFee += c_memoryFee;
if (mem(stack.back()) && !stack[stack.size() - 2])
voidFee -= c_memoryFee;
// continue on to...
case Instruction::LOAD:
minerFee += c_dataFee;
break;
case Instruction::EXTRO:
case Instruction::BALANCE:
minerFee += c_extroFee;
break;
case Instruction::MKTX:
minerFee += c_txFee;
break;
case Instruction::SHA256:
case Instruction::RIPEMD160:
case Instruction::ECMUL:
case Instruction::ECADD:
case Instruction::ECSIGN:
case Instruction::ECRECOVER:
case Instruction::ECVALID:
minerFee += c_cryptoFee;
break;
default:
break;
}
if (minerFee + voidFee > balance(_myAddress))
throw NotEnoughCash();
subBalance(_myAddress, minerFee + voidFee);
*_totalFee += (u256)minerFee;
switch (inst)
{
case Instruction::ADD:
//pops two items and pushes S[-1] + S[-2] mod 2^256.
require(2);
stack[stack.size() - 2] += stack.back();
stack.pop_back();
break;
case Instruction::MUL:
//pops two items and pushes S[-1] * S[-2] mod 2^256.
require(2);
stack[stack.size() - 2] *= stack.back();
stack.pop_back();
break;
case Instruction::SUB:
require(2);
stack[stack.size() - 2] = stack.back() - stack[stack.size() - 2];
stack.pop_back();
break;
case Instruction::DIV:
require(2);
stack[stack.size() - 2] = stack.back() / stack[stack.size() - 2];
stack.pop_back();
break;
case Instruction::SDIV:
require(2);
(s256&)stack[stack.size() - 2] = (s256&)stack.back() / (s256&)stack[stack.size() - 2];
stack.pop_back();
break;
case Instruction::MOD:
require(2);
stack[stack.size() - 2] = stack.back() % stack[stack.size() - 2];
stack.pop_back();
break;
case Instruction::SMOD:
require(2);
(s256&)stack[stack.size() - 2] = (s256&)stack.back() % (s256&)stack[stack.size() - 2];
stack.pop_back();
break;
case Instruction::EXP:
{
// TODO: better implementation?
require(2);
auto n = stack.back();
auto x = stack[stack.size() - 2];
stack.pop_back();
for (u256 i = 0; i < x; ++i)
n *= n;
stack.back() = n;
break;
}
case Instruction::NEG:
require(1);
stack.back() = ~(stack.back() - 1);
break;
case Instruction::LT:
require(2);
stack[stack.size() - 2] = stack.back() < stack[stack.size() - 2] ? 1 : 0;
stack.pop_back();
break;
case Instruction::LE:
require(2);
stack[stack.size() - 2] = stack.back() <= stack[stack.size() - 2] ? 1 : 0;
stack.pop_back();
break;
case Instruction::GT:
require(2);
stack[stack.size() - 2] = stack.back() > stack[stack.size() - 2] ? 1 : 0;
stack.pop_back();
break;
case Instruction::GE:
require(2);
stack[stack.size() - 2] = stack.back() >= stack[stack.size() - 2] ? 1 : 0;
stack.pop_back();
break;
case Instruction::EQ:
require(2);
stack[stack.size() - 2] = stack.back() == stack[stack.size() - 2] ? 1 : 0;
stack.pop_back();
break;
case Instruction::NOT:
require(1);
stack.back() = stack.back() ? 0 : 1;
stack.pop_back();
break;
case Instruction::MYADDRESS:
stack.push_back(_myAddress);
break;
case Instruction::TXSENDER:
stack.push_back(_txSender);
break;
case Instruction::TXVALUE:
stack.push_back(_txValue);
break;
case Instruction::TXFEE:
stack.push_back(_txFee);
break;
case Instruction::TXDATAN:
stack.push_back(_txData.size());
break;
case Instruction::TXDATA:
require(1);
stack.back() = stack.back() < _txData.size() ? _txData[(uint)stack.back()] : 0;
break;
case Instruction::BLK_PREVHASH:
stack.push_back(m_previousBlock.hash);
break;
case Instruction::BLK_COINBASE:
stack.push_back(m_currentBlock.coinbaseAddress);
break;
case Instruction::BLK_TIMESTAMP:
stack.push_back(m_currentBlock.timestamp);
break;
case Instruction::BLK_NUMBER:
stack.push_back(m_currentBlock.number);
break;
case Instruction::BLK_DIFFICULTY:
stack.push_back(m_currentBlock.difficulty);
break;
case Instruction::SHA256:
case Instruction::RIPEMD160:
{
uint s = (uint)min(stack.back(), (u256)(stack.size() - 1) * 32);
bytes b(s);
uint i = 0;
for (; s; s = (s >= 32 ? s - 32 : 0), i += 32)
{
stack.pop_back();
u256 v = stack.back();
int sz = (int)min(32, s) - 1; // sz is one fewer than the number of bytes we're interested in.
v >>= ((31 - sz) * 8); // kill unused low-order bytes.
for (int j = 0; j <= sz; ++j, v >>= 8) // cycle through bytes, starting at low-order end.
b[i + sz - j] = (byte)(v & 0xff); // set each 32-byte (256-bit) chunk in reverse - (i.e. we want to put low-order last).
}
if (inst == Instruction::SHA256)
stack.back() = sha256(b);
else
// NOTE: this aligns to right of 256-bit container (low-order bytes).
// This won't work if they're treated as byte-arrays and thus left-aligned in a 256-bit container.
stack.back() = ripemd160(&b);
break;
}
case Instruction::ECMUL:
{
// ECMUL - pops three items.
// If (S[-2],S[-1]) are a valid point in secp256k1, including both coordinates being less than P, pushes (S[-1],S[-2]) * S[-3], using (0,0) as the point at infinity.
// Otherwise, pushes (0,0).
require(3);
bytes pub(1, 4);
pub += toBigEndian(stack[stack.size() - 2]);
pub += toBigEndian(stack.back());
stack.pop_back();
stack.pop_back();
bytes x = toBigEndian(stack.back());
stack.pop_back();
if (secp256k1_ecdsa_pubkey_verify(pub.data(), pub.size())) // TODO: Check both are less than P.
{
secp256k1_ecdsa_pubkey_tweak_mul(pub.data(), pub.size(), x.data());
stack.push_back(fromBigEndian(bytesConstRef(&pub).cropped(1, 32)));
stack.push_back(fromBigEndian(bytesConstRef(&pub).cropped(33, 32)));
}
else
{
stack.push_back(0);
stack.push_back(0);
}
break;
}
case Instruction::ECADD:
{
// ECADD - pops four items and pushes (S[-4],S[-3]) + (S[-2],S[-1]) if both points are valid, otherwise (0,0).
require(4);
bytes pub(1, 4);
pub += toBigEndian(stack[stack.size() - 2]);
pub += toBigEndian(stack.back());
stack.pop_back();
stack.pop_back();
bytes tweak(1, 4);
tweak += toBigEndian(stack[stack.size() - 2]);
tweak += toBigEndian(stack.back());
stack.pop_back();
stack.pop_back();
if (secp256k1_ecdsa_pubkey_verify(pub.data(), pub.size()) && secp256k1_ecdsa_pubkey_verify(tweak.data(), tweak.size()))
{
secp256k1_ecdsa_pubkey_tweak_add(pub.data(), pub.size(), tweak.data());
stack.push_back(fromBigEndian(bytesConstRef(&pub).cropped(1, 32)));
stack.push_back(fromBigEndian(bytesConstRef(&pub).cropped(33, 32)));
}
else
{
stack.push_back(0);
stack.push_back(0);
}
break;
}
case Instruction::ECSIGN:
{
require(2);
bytes sig(64);
int v = 0;
u256 msg = stack.back();
stack.pop_back();
u256 priv = stack.back();
stack.pop_back();
bytes nonce = toBigEndian(Transaction::kFromMessage(msg, priv));
if (!secp256k1_ecdsa_sign_compact(toBigEndian(msg).data(), 64, sig.data(), toBigEndian(priv).data(), nonce.data(), &v))
throw InvalidSignature();
stack.push_back(v + 27);
stack.push_back(fromBigEndian(bytesConstRef(&sig).cropped(0, 32)));
stack.push_back(fromBigEndian(bytesConstRef(&sig).cropped(32)));
break;
}
case Instruction::ECRECOVER:
{
require(4);
bytes sig = toBigEndian(stack[stack.size() - 2]) + toBigEndian(stack.back());
stack.pop_back();
stack.pop_back();
int v = (int)stack.back();
stack.pop_back();
bytes msg = toBigEndian(stack.back());
stack.pop_back();
byte pubkey[65];
int pubkeylen = 65;
if (secp256k1_ecdsa_recover_compact(msg.data(), msg.size(), sig.data(), pubkey, &pubkeylen, 0, v - 27))
{
stack.push_back(0);
stack.push_back(0);
}
else
{
stack.push_back(fromBigEndian(bytesConstRef(&pubkey[1], 32)));
stack.push_back(fromBigEndian(bytesConstRef(&pubkey[33], 32)));
}
break;
}
case Instruction::ECVALID:
{
require(2);
bytes pub(1, 4);
pub += toBigEndian(stack[stack.size() - 2]);
pub += toBigEndian(stack.back());
stack.pop_back();
stack.pop_back();
stack.back() = secp256k1_ecdsa_pubkey_verify(pub.data(), pub.size()) ? 1 : 0;
break;
}
case Instruction::PUSH:
{
stack.push_back(mem(curPC + 1));
nextPC = curPC + 2;
break;
}
case Instruction::POP:
require(1);
stack.pop_back();
break;
case Instruction::DUP:
require(1);
stack.push_back(stack.back());
break;
case Instruction::DUPN:
{
auto s = mem(curPC + 1);
if (s == 0 || s > stack.size())
throw OperandOutOfRange(1, stack.size(), s);
stack.push_back(stack[stack.size() - (uint)s]);
nextPC = curPC + 2;
break;
}
case Instruction::SWAP:
{
require(2);
auto d = stack.back();
stack.back() = stack[stack.size() - 2];
stack[stack.size() - 2] = d;
break;
}
case Instruction::SWAPN:
{
require(1);
auto d = stack.back();
auto s = mem(curPC + 1);
if (s == 0 || s > stack.size())
throw OperandOutOfRange(1, stack.size(), s);
stack.back() = stack[stack.size() - (uint)s];
stack[stack.size() - (uint)s] = d;
nextPC = curPC + 2;
break;
}
case Instruction::LOAD:
require(1);
stack.back() = mem(stack.back());
break;
case Instruction::STORE:
require(2);
setMem(stack.back(), stack[stack.size() - 2]);
stack.pop_back();
stack.pop_back();
break;
case Instruction::JMP:
require(1);
nextPC = stack.back();
stack.pop_back();
break;
case Instruction::JMPI:
require(2);
if (stack.back())
nextPC = stack[stack.size() - 2];
stack.pop_back();
stack.pop_back();
break;
case Instruction::IND:
stack.push_back(curPC);
break;
case Instruction::EXTRO:
{
require(2);
auto memoryAddress = stack.back();
stack.pop_back();
Address contractAddress = as160(stack.back());
stack.back() = contractMemory(contractAddress, memoryAddress);
break;
}
case Instruction::BALANCE:
{
require(1);
stack.back() = balance(as160(stack.back()));
break;
}
case Instruction::MKTX:
{
require(4);
Transaction t;
t.receiveAddress = as160(stack.back());
stack.pop_back();
t.value = stack.back();
stack.pop_back();
t.fee = stack.back();
stack.pop_back();
auto itemCount = stack.back();
stack.pop_back();
if (stack.size() < itemCount)
throw OperandOutOfRange(0, stack.size(), itemCount);
t.data.reserve((uint)itemCount);
for (auto i = 0; i < itemCount; ++i)
{
t.data.push_back(stack.back());
stack.pop_back();
}
t.nonce = transactionsFrom(_myAddress);
execute(t, _myAddress);
break;
}
case Instruction::SUICIDE:
{
require(1);
Address dest = as160(stack.back());
u256 minusVoidFee = m_current[_myAddress].memory().size() * c_memoryFee;
addBalance(dest, balance(_myAddress) + minusVoidFee);
m_current.erase(_myAddress);
// ...follow through to...
}
case Instruction::STOP:
return;
default:
throw BadInstruction();
}
}
}