/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file Dagger.cpp
* @author Gav Wood
* @date 2014
*/
#include
#include
#include
#include
#include
#include
#include "Dagger.h"
using namespace std;
using namespace std::chrono;
namespace eth
{
#if FAKE_DAGGER
MineInfo Dagger::mine(h256& o_solution, h256 const& _root, u256 const& _difficulty, uint _msTimeout, bool const& _continue)
{
MineInfo ret{0, 0, false};
static std::mt19937_64 s_eng((time(0)));
u256 s = std::uniform_int_distribution(0, ~(uint)0)(s_eng);
bigint d = (bigint(1) << 256) / _difficulty;
ret.requirement = toLog2((u256)d);
// 2^ 0 32 64 128 256
// [--------*-------------------------]
//
// evaluate until we run out of time
for (auto startTime = steady_clock::now(); (steady_clock::now() - startTime) < milliseconds(_msTimeout) && _continue; s++)
{
o_solution = (h256)s;
auto e = (bigint)(u256)eval(_root, o_solution);
ret.best = max(ret.best, toLog2((u256)e));
if (e <= d)
{
ret.completed = true;
break;
}
}
if (ret.completed)
assert(verify(_root, o_solution, _difficulty));
return ret;
}
#else
Dagger::Dagger()
{
}
Dagger::~Dagger()
{
}
u256 Dagger::bound(u256 const& _difficulty)
{
return (u256)((bigint(1) << 256) / _difficulty);
}
bool Dagger::verify(h256 const& _root, u256 const& _nonce, u256 const& _difficulty)
{
return eval(_root, _nonce) < bound(_difficulty);
}
bool Dagger::mine(u256& o_solution, h256 const& _root, u256 const& _difficulty, uint _msTimeout, bool const& _continue)
{
// restart search if root has changed
if (m_root != _root)
{
m_root = _root;
m_nonce = 0;
}
// compute bound
u256 const b = bound(_difficulty);
// evaluate until we run out of time
for (auto startTime = steady_clock::now(); (steady_clock::now() - startTime) < milliseconds(_msTimeout) && _continue; m_nonce += 1)
{
if (eval(_root, m_nonce) < b)
{
o_solution = m_nonce;
return true;
}
}
return false;
}
template
inline void update(_T& _sha, u256 const& _value)
{
int i = 0;
for (u256 v = _value; v; ++i, v >>= 8) {}
byte buf[32];
bytesRef bufRef(buf, i);
toBigEndian(_value, bufRef);
_sha.Update(buf, i);
}
template
inline void update(_T& _sha, h256 const& _value)
{
int i = 0;
byte const* data = _value.data();
for (; i != 32 && data[i] == 0; ++i);
_sha.Update(data + i, 32 - i);
}
template
inline h256 get(_T& _sha)
{
h256 ret;
_sha.TruncatedFinal(&ret[0], 32);
return ret;
}
h256 Dagger::node(h256 const& _root, h256 const& _xn, uint_fast32_t _L, uint_fast32_t _i)
{
if (_L == _i)
return _root;
u256 m = (_L == 9) ? 16 : 3;
CryptoPP::SHA3_256 bsha;
for (uint_fast32_t k = 0; k < m; ++k)
{
CryptoPP::SHA3_256 sha;
update(sha, _root);
update(sha, _xn);
update(sha, (u256)_L);
update(sha, (u256)_i);
update(sha, (u256)k);
uint_fast32_t pk = (uint_fast32_t)(u256)get(sha) & ((1 << ((_L - 1) * 3)) - 1);
auto u = node(_root, _xn, _L - 1, pk);
update(bsha, u);
}
return get(bsha);
}
h256 Dagger::eval(h256 const& _root, u256 const& _nonce)
{
h256 extranonce = _nonce >> 26; // with xn = floor(n / 2^26) -> assuming this is with xn = floor(N / 2^26)
CryptoPP::SHA3_256 bsha;
for (uint_fast32_t k = 0; k < 4; ++k)
{
//sha256(D || xn || i || k) -> sha256(D || xn || k) - there's no 'i' here!
CryptoPP::SHA3_256 sha;
update(sha, _root);
update(sha, extranonce);
update(sha, _nonce);
update(sha, (u256)k);
uint_fast32_t pk = (uint_fast32_t)(u256)get(sha) & 0x1ffffff; // mod 8^8 * 2 [ == mod 2^25 ?! ] [ == & ((1 << 25) - 1) ] [ == & 0x1ffffff ]
auto u = node(_root, extranonce, 9, pk);
update(bsha, u);
}
return get(bsha);
}
#endif
}