/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file BlockChain.cpp * @author Gav Wood * @date 2014 */ #include "BlockChain.h" #include #include #include #include #include #include #include #include "State.h" #include "Defaults.h" using namespace std; using namespace eth; #define ETH_CATCH 1 std::ostream& eth::operator<<(std::ostream& _out, BlockChain const& _bc) { string cmp = toBigEndianString(_bc.currentHash()); auto it = _bc.m_extrasDB->NewIterator(_bc.m_readOptions); for (it->SeekToFirst(); it->Valid(); it->Next()) if (it->key().ToString() != "best") { BlockDetails d(RLP(it->value().ToString())); _out << toHex(it->key().ToString()) << ": " << d.number << " @ " << d.parent << (cmp == it->key().ToString() ? " BEST" : "") << std::endl; } delete it; return _out; } std::map const& eth::genesisState() { static std::map s_ret; if (s_ret.empty()) // Initialise. for (auto i: vector({ "51ba59315b3a95761d0863b05ccc7a7f54703d99", "e6716f9544a56c530d868e4bfbacb172315bdead", "b9c015918bdaba24b4ff057a92a3873d6eb201be", "1a26338f0d905e295fccb71fa9ea849ffa12aaf4", "2ef47100e0787b915105fd5e3f4ff6752079d5cb", "cd2a3d9f938e13cd947ec05abc7fe734df8dd826", "6c386a4b26f73c802f34673f7248bb118f97424a", "e4157b34ea9615cfbde6b4fda419828124b70c78" })) s_ret[Address(fromHex(i))] = AddressState(0, u256(1) << 200, h256(), EmptySHA3); return s_ret; } BlockInfo* BlockChain::s_genesis = nullptr; boost::shared_mutex BlockChain::x_genesis; ldb::Slice eth::toSlice(h256 _h, unsigned _sub) { #if ALL_COMPILERS_ARE_CPP11_COMPLIANT static thread_local h256 h = _h ^ h256(u256(_sub)); return ldb::Slice((char const*)&h, 32); #else static boost::thread_specific_ptr t_h; if (!t_h.get()) t_h.reset(new h256); *t_h = _h ^ h256(u256(_sub)); return ldb::Slice((char const*)t_h.get(), 32); #endif } bytes BlockChain::createGenesisBlock() { RLPStream block(3); auto sha3EmptyList = sha3(RLPEmptyList); h256 stateRoot; { MemoryDB db; TrieDB state(&db); state.init(); eth::commit(genesisState(), db, state); stateRoot = state.root(); } block.appendList(13) << h256() << sha3EmptyList << h160(); block.append(stateRoot, false, true) << bytes() << c_genesisDifficulty << 0 << 0 << 1000000 << 0 << (uint)0 << string() << sha3(bytes(1, 42)); block.appendRaw(RLPEmptyList); block.appendRaw(RLPEmptyList); return block.out(); } BlockChain::BlockChain(std::string _path, bool _killExisting) { if (_path.empty()) _path = Defaults::get()->m_dbPath; boost::filesystem::create_directories(_path); if (_killExisting) { boost::filesystem::remove_all(_path + "/blocks"); boost::filesystem::remove_all(_path + "/details"); } ldb::Options o; o.create_if_missing = true; auto s = ldb::DB::Open(o, _path + "/blocks", &m_db); assert(m_db); s = ldb::DB::Open(o, _path + "/details", &m_extrasDB); assert(m_extrasDB); // Initialise with the genesis as the last block on the longest chain. m_genesisHash = BlockChain::genesis().hash; m_genesisBlock = BlockChain::createGenesisBlock(); if (!details(m_genesisHash)) { // Insert details of genesis block. m_details[m_genesisHash] = BlockDetails(0, c_genesisDifficulty, h256(), {}, h256()); auto r = m_details[m_genesisHash].rlp(); m_extrasDB->Put(m_writeOptions, ldb::Slice((char const*)&m_genesisHash, 32), (ldb::Slice)eth::ref(r)); } checkConsistency(); // TODO: Implement ability to rebuild details map from DB. std::string l; m_extrasDB->Get(m_readOptions, ldb::Slice("best"), &l); m_lastBlockHash = l.empty() ? m_genesisHash : *(h256*)l.data(); cnote << "Opened blockchain DB. Latest: " << currentHash(); } BlockChain::~BlockChain() { cnote << "Closing blockchain DB"; delete m_extrasDB; delete m_db; } template bool contains(T const& _t, V const& _v) { for (auto const& i: _t) if (i == _v) return true; return false; } h256s BlockChain::sync(BlockQueue& _bq, OverlayDB const& _stateDB, unsigned _max) { vector blocks; _bq.drain(blocks); h256s ret; for (auto const& block: blocks) { try { for (auto h: import(block, _stateDB)) if (!_max--) break; else ret.push_back(h); } catch (UnknownParent) { cwarn << "Unknown parent of block!!!" << eth::sha3(block).abridged(); _bq.import(&block, *this); } catch (...){} } _bq.doneDrain(); return ret; } h256s BlockChain::attemptImport(bytes const& _block, OverlayDB const& _stateDB) noexcept { try { return import(_block, _stateDB); } catch (...) { return h256s(); } } h256s BlockChain::import(bytes const& _block, OverlayDB const& _db) { // VERIFY: populates from the block and checks the block is internally coherent. BlockInfo bi; #if ETH_CATCH try #endif { bi.populate(&_block); bi.verifyInternals(&_block); } #if ETH_CATCH catch (Exception const& _e) { clog(BlockChainNote) << " Malformed block (" << _e.description() << ")."; throw; } #endif auto newHash = eth::sha3(_block); // Check block doesn't already exist first! if (details(newHash)) { clog(BlockChainNote) << newHash << ": Not new."; throw AlreadyHaveBlock(); } // Work out its number as the parent's number + 1 auto pd = details(bi.parentHash); if (!pd) { clog(BlockChainNote) << newHash << ": Unknown parent " << bi.parentHash; // We don't know the parent (yet) - discard for now. It'll get resent to us if we find out about its ancestry later on. throw UnknownParent(); } // Check it's not crazy if (bi.timestamp > (u256)time(0)) { clog(BlockChainNote) << newHash << ": Future time " << bi.timestamp << " (now at " << time(0) << ")"; // Block has a timestamp in the future. This is no good. throw FutureTime(); } clog(BlockChainNote) << "Attempting import of " << newHash << "..."; u256 td; #if ETH_CATCH try #endif { // Check transactions are valid and that they result in a state equivalent to our state_root. // Get total difficulty increase and update state, checking it. State s(bi.coinbaseAddress, _db); auto tdIncrease = s.enactOn(&_block, bi, *this); auto b = s.bloom(); BlockBlooms bb; BlockTraces bt; for (unsigned i = 0; i < s.pending().size(); ++i) { bt.traces.push_back(s.changesFromPending(i)); bb.blooms.push_back(s.changesFromPending(i).bloom()); } s.cleanup(true); td = pd.totalDifficulty + tdIncrease; #if ETH_PARANOIA checkConsistency(); #endif // All ok - insert into DB { WriteGuard l(x_details); m_details[newHash] = BlockDetails((uint)pd.number + 1, td, bi.parentHash, {}, b); m_details[bi.parentHash].children.push_back(newHash); } { WriteGuard l(x_blooms); m_blooms[newHash] = bb; } { WriteGuard l(x_traces); m_traces[newHash] = bt; } m_extrasDB->Put(m_writeOptions, toSlice(newHash), (ldb::Slice)eth::ref(m_details[newHash].rlp())); m_extrasDB->Put(m_writeOptions, toSlice(bi.parentHash), (ldb::Slice)eth::ref(m_details[bi.parentHash].rlp())); m_extrasDB->Put(m_writeOptions, toSlice(newHash, 1), (ldb::Slice)eth::ref(m_blooms[newHash].rlp())); m_extrasDB->Put(m_writeOptions, toSlice(newHash, 2), (ldb::Slice)eth::ref(m_traces[newHash].rlp())); m_db->Put(m_writeOptions, toSlice(newHash), (ldb::Slice)ref(_block)); #if ETH_PARANOIA checkConsistency(); #endif } #if ETH_CATCH catch (Exception const& _e) { clog(BlockChainNote) << " Malformed block (" << _e.description() << ")."; throw; } #endif // cnote << "Parent " << bi.parentHash << " has " << details(bi.parentHash).children.size() << " children."; h256s ret; // This might be the new best block... h256 last = currentHash(); if (td > details(last).totalDifficulty) { ret = treeRoute(last, newHash); { WriteGuard l(x_lastBlockHash); m_lastBlockHash = newHash; } m_extrasDB->Put(m_writeOptions, ldb::Slice("best"), ldb::Slice((char const*)&newHash, 32)); clog(BlockChainNote) << " Imported and best. Has" << (details(bi.parentHash).children.size() - 1) << "siblings. Route:"; for (auto r: ret) clog(BlockChainNote) << r; } else { clog(BlockChainNote) << " Imported but not best (oTD:" << details(last).totalDifficulty << ", TD:" << td << ")"; } return ret; } h256s BlockChain::treeRoute(h256 _from, h256 _to, h256* o_common, bool _pre, bool _post) const { h256s ret; h256s back; unsigned fn = details(_from).number; unsigned tn = details(_to).number; while (fn > tn) { if (_pre) ret.push_back(_from); _from = details(_from).parent; fn--; } while (fn < tn) { if (_post) back.push_back(_to); _to = details(_to).parent; tn--; } while (_from != _to) { if (_pre) _from = details(_from).parent; if (_post) _to = details(_to).parent; ret.push_back(_from); back.push_back(_to); } if (o_common) *o_common = _from; ret.reserve(ret.size() + back.size()); for (auto it = back.cbegin(); it != back.cend(); ++it) ret.push_back(*it); return ret; } void BlockChain::checkConsistency() { m_details.clear(); ldb::Iterator* it = m_db->NewIterator(m_readOptions); for (it->SeekToFirst(); it->Valid(); it->Next()) if (it->key().size() == 32) { h256 h((byte const*)it->key().data(), h256::ConstructFromPointer); auto dh = details(h); auto p = dh.parent; if (p != h256()) { auto dp = details(p); assert(contains(dp.children, h)); assert(dp.number == dh.number - 1); } } delete it; } bytes BlockChain::block(h256 _hash) const { if (_hash == m_genesisHash) return m_genesisBlock; { ReadGuard l(x_cache); auto it = m_cache.find(_hash); if (it != m_cache.end()) return it->second; } string d; m_db->Get(m_readOptions, ldb::Slice((char const*)&_hash, 32), &d); WriteGuard l(x_cache); m_cache[_hash].resize(d.size()); memcpy(m_cache[_hash].data(), d.data(), d.size()); if (!d.size()) cwarn << "Couldn't find requested block:" << _hash.abridged(); return m_cache[_hash]; } h256 BlockChain::numberHash(unsigned _n) const { if (!_n) return genesisHash(); h256 ret = currentHash(); for (; _n < details().number; ++_n, ret = details(ret).parent) {} return ret; }