#include "Compiler.h" #include #include #include #include #include "preprocessor/llvm_includes_start.h" #include #include #include #include "preprocessor/llvm_includes_end.h" #include "Instruction.h" #include "Type.h" #include "Memory.h" #include "Stack.h" #include "Ext.h" #include "GasMeter.h" #include "Utils.h" #include "Endianness.h" #include "Arith256.h" #include "RuntimeManager.h" namespace dev { namespace eth { namespace jit { static const auto c_destIdxLabel = "destIdx"; Compiler::Compiler(Options const& _options): m_options(_options), m_builder(llvm::getGlobalContext()) { Type::init(m_builder.getContext()); } std::vector Compiler::createBasicBlocks(code_iterator _codeBegin, code_iterator _codeEnd, llvm::SwitchInst& _jumpTable) { /// Helper function that skips push data and finds next iterator (can be the end) auto skipPushDataAndGetNext = [](code_iterator _curr, code_iterator _end) { static const auto push1 = static_cast(Instruction::PUSH1); static const auto push32 = static_cast(Instruction::PUSH32); size_t offset = 1; if (*_curr >= push1 && *_curr <= push32) offset += std::min(*_curr - push1 + 1, (_end - _curr) - 1); return _curr + offset; }; // Skip all STOPs in the end for (; _codeEnd != _codeBegin; --_codeEnd) if (*(_codeEnd - 1) != static_cast(Instruction::STOP)) break; std::vector blocks; auto begin = _codeBegin; // begin of current block for (auto curr = begin, next = begin; curr != _codeEnd; curr = next) { next = skipPushDataAndGetNext(curr, _codeEnd); bool isEnd = false; switch (Instruction(*curr)) { case Instruction::JUMP: case Instruction::JUMPI: case Instruction::RETURN: case Instruction::STOP: case Instruction::SUICIDE: isEnd = true; break; default: break; } assert(next <= _codeEnd); if (next == _codeEnd || Instruction(*next) == Instruction::JUMPDEST) isEnd = true; if (isEnd) { auto beginIdx = begin - _codeBegin; blocks.emplace_back(beginIdx, begin, next, m_mainFunc); if (Instruction(*begin) == Instruction::JUMPDEST) _jumpTable.addCase(Constant::get(beginIdx), blocks.back().llvm()); begin = next; } } return blocks; } void Compiler::resolveJumps() { // Iterate through all EVM instructions blocks (skip first 4 - special blocks). for (auto it = std::next(m_mainFunc->begin(), 4); it != m_mainFunc->end(); ++it) { auto jumpTable = llvm::cast(m_jumpTableBB->getTerminator()); auto jumpTableInput = llvm::cast(m_jumpTableBB->begin()); auto nextBlock = it->getNextNode() != m_mainFunc->end() ? it->getNextNode() : m_stopBB; auto term = it->getTerminator(); if (!term) // Block may have no terminator if the next instruction is a jump destination. llvm::IRBuilder<>{it}.CreateBr(nextBlock); else if (auto jump = llvm::dyn_cast(term)) if (jump->getSuccessor(0) == m_jumpTableBB) { auto destIdx = llvm::cast(jump->getMetadata(c_destIdxLabel)->getOperand(0))->getValue(); if (auto constant = llvm::dyn_cast(destIdx)) { // If destination index is a constant do direct jump to the destination block. auto bb = jumpTable->findCaseValue(constant).getCaseSuccessor(); jump->setSuccessor(0, bb); } else jumpTableInput->addIncoming(destIdx, it); // Fill up PHI node if (jump->isConditional()) jump->setSuccessor(1, nextBlock); // Set next block for conditional jumps } } } std::unique_ptr Compiler::compile(code_iterator _begin, code_iterator _end, std::string const& _id) { auto module = std::unique_ptr(new llvm::Module(_id, m_builder.getContext())); // Create main function auto mainFuncType = llvm::FunctionType::get(Type::MainReturn, Type::RuntimePtr, false); m_mainFunc = llvm::Function::Create(mainFuncType, llvm::Function::ExternalLinkage, _id, module.get()); m_mainFunc->getArgumentList().front().setName("rt"); // Create entry basic block auto entryBlock = llvm::BasicBlock::Create(m_builder.getContext(), {}, m_mainFunc); m_stopBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "Stop", m_mainFunc); m_abortBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "Abort", m_mainFunc); m_jumpTableBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "JumpTable", m_mainFunc); m_builder.SetInsertPoint(m_jumpTableBB); auto target = m_builder.CreatePHI(Type::Word, 16, "target"); auto& jumpTable = *m_builder.CreateSwitch(target, m_abortBB); m_builder.SetInsertPoint(entryBlock); auto blocks = createBasicBlocks(_begin, _end, jumpTable); // Init runtime structures. RuntimeManager runtimeManager(m_builder, _begin, _end); GasMeter gasMeter(m_builder, runtimeManager); Memory memory(runtimeManager, gasMeter); Ext ext(runtimeManager, memory); Stack stack(m_builder); runtimeManager.setStack(stack); // Runtime Manager will free stack memory Arith256 arith(m_builder); auto jmpBufWords = m_builder.CreateAlloca(Type::BytePtr, m_builder.getInt64(3), "jmpBuf.words"); auto frameaddress = llvm::Intrinsic::getDeclaration(module.get(), llvm::Intrinsic::frameaddress); auto fp = m_builder.CreateCall(frameaddress, m_builder.getInt32(0), "fp"); m_builder.CreateStore(fp, jmpBufWords); auto stacksave = llvm::Intrinsic::getDeclaration(module.get(), llvm::Intrinsic::stacksave); auto sp = m_builder.CreateCall(stacksave, {}, "sp"); auto jmpBufSp = m_builder.CreateConstInBoundsGEP1_64(jmpBufWords, 2, "jmpBuf.sp"); m_builder.CreateStore(sp, jmpBufSp); auto setjmp = llvm::Intrinsic::getDeclaration(module.get(), llvm::Intrinsic::eh_sjlj_setjmp); auto jmpBuf = m_builder.CreateBitCast(jmpBufWords, Type::BytePtr, "jmpBuf"); auto r = m_builder.CreateCall(setjmp, jmpBuf); auto normalFlow = m_builder.CreateICmpEQ(r, m_builder.getInt32(0)); runtimeManager.setJmpBuf(jmpBuf); auto firstBB = blocks.empty() ? m_stopBB : blocks.front().llvm(); m_builder.CreateCondBr(normalFlow, firstBB, m_abortBB, Type::expectTrue); for (auto& block: blocks) compileBasicBlock(block, runtimeManager, arith, memory, ext, gasMeter, stack); // Code for special blocks: m_builder.SetInsertPoint(m_stopBB); runtimeManager.exit(ReturnCode::Stop); m_builder.SetInsertPoint(m_abortBB); runtimeManager.exit(ReturnCode::OutOfGas); resolveJumps(); return module; } void Compiler::compileBasicBlock(BasicBlock& _basicBlock, RuntimeManager& _runtimeManager, Arith256& _arith, Memory& _memory, Ext& _ext, GasMeter& _gasMeter, Stack& _globalStack) { m_builder.SetInsertPoint(_basicBlock.llvm()); LocalStack stack{_globalStack}; for (auto it = _basicBlock.begin(); it != _basicBlock.end(); ++it) { auto inst = Instruction(*it); _gasMeter.count(inst); switch (inst) { case Instruction::ADD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto result = m_builder.CreateAdd(lhs, rhs); stack.push(result); break; } case Instruction::SUB: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto result = m_builder.CreateSub(lhs, rhs); stack.push(result); break; } case Instruction::MUL: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateMul(lhs, rhs); stack.push(res); break; } case Instruction::DIV: { auto d = stack.pop(); auto n = stack.pop(); auto divByZero = m_builder.CreateICmpEQ(n, Constant::get(0)); n = m_builder.CreateSelect(divByZero, Constant::get(1), n); // protect against hardware signal auto r = m_builder.CreateUDiv(d, n); r = m_builder.CreateSelect(divByZero, Constant::get(0), r); stack.push(r); break; } case Instruction::SDIV: { auto d = stack.pop(); auto n = stack.pop(); auto divByZero = m_builder.CreateICmpEQ(n, Constant::get(0)); auto divByMinusOne = m_builder.CreateICmpEQ(n, Constant::get(-1)); n = m_builder.CreateSelect(divByZero, Constant::get(1), n); // protect against hardware signal auto r = m_builder.CreateSDiv(d, n); r = m_builder.CreateSelect(divByZero, Constant::get(0), r); auto dNeg = m_builder.CreateSub(Constant::get(0), d); r = m_builder.CreateSelect(divByMinusOne, dNeg, r); // protect against undef i256.min / -1 stack.push(r); break; } case Instruction::MOD: { auto d = stack.pop(); auto n = stack.pop(); auto divByZero = m_builder.CreateICmpEQ(n, Constant::get(0)); n = m_builder.CreateSelect(divByZero, Constant::get(1), n); // protect against hardware signal auto r = m_builder.CreateURem(d, n); r = m_builder.CreateSelect(divByZero, Constant::get(0), r); stack.push(r); break; } case Instruction::SMOD: { auto d = stack.pop(); auto n = stack.pop(); auto divByZero = m_builder.CreateICmpEQ(n, Constant::get(0)); auto divByMinusOne = m_builder.CreateICmpEQ(n, Constant::get(-1)); n = m_builder.CreateSelect(divByZero, Constant::get(1), n); // protect against hardware signal auto r = m_builder.CreateSRem(d, n); r = m_builder.CreateSelect(divByZero, Constant::get(0), r); r = m_builder.CreateSelect(divByMinusOne, Constant::get(0), r); // protect against undef i256.min / -1 stack.push(r); break; } case Instruction::ADDMOD: { auto i512Ty = m_builder.getIntNTy(512); auto a = stack.pop(); auto b = stack.pop(); auto m = stack.pop(); auto divByZero = m_builder.CreateICmpEQ(m, Constant::get(0)); a = m_builder.CreateZExt(a, i512Ty); b = m_builder.CreateZExt(b, i512Ty); m = m_builder.CreateZExt(m, i512Ty); auto s = m_builder.CreateNUWAdd(a, b); s = m_builder.CreateURem(s, m); s = m_builder.CreateTrunc(s, Type::Word); s = m_builder.CreateSelect(divByZero, Constant::get(0), s); stack.push(s); break; } case Instruction::MULMOD: { auto i512Ty = m_builder.getIntNTy(512); auto a = stack.pop(); auto b = stack.pop(); auto m = stack.pop(); auto divByZero = m_builder.CreateICmpEQ(m, Constant::get(0)); m = m_builder.CreateZExt(m, i512Ty); // TODO: Add support for i256 x i256 -> i512 in LowerEVM pass llvm::Value* p = m_builder.CreateCall(Arith256::getMul512Func(*_basicBlock.llvm()->getParent()->getParent()), {a, b}); p = m_builder.CreateURem(p, m); p = m_builder.CreateTrunc(p, Type::Word); p = m_builder.CreateSelect(divByZero, Constant::get(0), p); stack.push(p); break; } case Instruction::EXP: { auto base = stack.pop(); auto exponent = stack.pop(); _gasMeter.countExp(exponent); auto ret = _arith.exp(base, exponent); stack.push(ret); break; } case Instruction::NOT: { auto value = stack.pop(); auto ret = m_builder.CreateXor(value, Constant::get(-1), "bnot"); stack.push(ret); break; } case Instruction::LT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpULT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::GT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpUGT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::SLT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpSLT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::SGT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpSGT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::EQ: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpEQ(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::Word); stack.push(res256); break; } case Instruction::ISZERO: { auto top = stack.pop(); auto iszero = m_builder.CreateICmpEQ(top, Constant::get(0), "iszero"); auto result = m_builder.CreateZExt(iszero, Type::Word); stack.push(result); break; } case Instruction::AND: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateAnd(lhs, rhs); stack.push(res); break; } case Instruction::OR: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateOr(lhs, rhs); stack.push(res); break; } case Instruction::XOR: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateXor(lhs, rhs); stack.push(res); break; } case Instruction::BYTE: { const auto idx = stack.pop(); auto value = Endianness::toBE(m_builder, stack.pop()); auto idxValid = m_builder.CreateICmpULT(idx, Constant::get(32), "idxValid"); auto bytes = m_builder.CreateBitCast(value, llvm::VectorType::get(Type::Byte, 32), "bytes"); // TODO: Workaround for LLVM bug. Using big value of index causes invalid memory access. auto safeIdx = m_builder.CreateTrunc(idx, m_builder.getIntNTy(5)); // TODO: Workaround for LLVM bug. DAG Builder used sext on index instead of zext safeIdx = m_builder.CreateZExt(safeIdx, Type::Size); auto byte = m_builder.CreateExtractElement(bytes, safeIdx, "byte"); value = m_builder.CreateZExt(byte, Type::Word); value = m_builder.CreateSelect(idxValid, value, Constant::get(0)); stack.push(value); break; } case Instruction::SIGNEXTEND: { auto idx = stack.pop(); auto word = stack.pop(); auto k32_ = m_builder.CreateTrunc(idx, m_builder.getIntNTy(5), "k_32"); auto k32 = m_builder.CreateZExt(k32_, Type::Size); auto k32x8 = m_builder.CreateMul(k32, m_builder.getInt64(8), "kx8"); // test for word >> (k * 8 + 7) auto bitpos = m_builder.CreateAdd(k32x8, m_builder.getInt64(7), "bitpos"); auto bitposEx = m_builder.CreateZExt(bitpos, Type::Word); auto bitval = m_builder.CreateLShr(word, bitposEx, "bitval"); auto bittest = m_builder.CreateTrunc(bitval, Type::Bool, "bittest"); auto mask_ = m_builder.CreateShl(Constant::get(1), bitposEx); auto mask = m_builder.CreateSub(mask_, Constant::get(1), "mask"); auto negmask = m_builder.CreateXor(mask, llvm::ConstantInt::getAllOnesValue(Type::Word), "negmask"); auto val1 = m_builder.CreateOr(word, negmask); auto val0 = m_builder.CreateAnd(word, mask); auto kInRange = m_builder.CreateICmpULE(idx, llvm::ConstantInt::get(Type::Word, 30)); auto result = m_builder.CreateSelect(kInRange, m_builder.CreateSelect(bittest, val1, val0), word); stack.push(result); break; } case Instruction::SHA3: { auto inOff = stack.pop(); auto inSize = stack.pop(); _memory.require(inOff, inSize); _gasMeter.countSha3Data(inSize); auto hash = _ext.sha3(inOff, inSize); stack.push(hash); break; } case Instruction::POP: { stack.pop(); break; } case Instruction::ANY_PUSH: { auto value = readPushData(it, _basicBlock.end()); stack.push(Constant::get(value)); break; } case Instruction::ANY_DUP: { auto index = static_cast(inst) - static_cast(Instruction::DUP1); stack.dup(index); break; } case Instruction::ANY_SWAP: { auto index = static_cast(inst) - static_cast(Instruction::SWAP1) + 1; stack.swap(index); break; } case Instruction::MLOAD: { auto addr = stack.pop(); auto word = _memory.loadWord(addr); stack.push(word); break; } case Instruction::MSTORE: { auto addr = stack.pop(); auto word = stack.pop(); _memory.storeWord(addr, word); break; } case Instruction::MSTORE8: { auto addr = stack.pop(); auto word = stack.pop(); _memory.storeByte(addr, word); break; } case Instruction::MSIZE: { auto word = _memory.getSize(); stack.push(word); break; } case Instruction::SLOAD: { auto index = stack.pop(); auto value = _ext.sload(index); stack.push(value); break; } case Instruction::SSTORE: { auto index = stack.pop(); auto value = stack.pop(); _gasMeter.countSStore(_ext, index, value); _ext.sstore(index, value); break; } case Instruction::JUMP: case Instruction::JUMPI: { auto destIdx = llvm::MDNode::get(m_builder.getContext(), llvm::ValueAsMetadata::get(stack.pop())); // Create branch instruction, initially to jump table. // Destination will be optimized with direct jump during jump resolving if destination index is a constant. auto jumpInst = (inst == Instruction::JUMP) ? m_builder.CreateBr(m_jumpTableBB) : m_builder.CreateCondBr(m_builder.CreateICmpNE(stack.pop(), Constant::get(0), "jump.check"), m_jumpTableBB, nullptr); // Attach medatada to branch instruction with information about destination index. jumpInst->setMetadata(c_destIdxLabel, destIdx); break; } case Instruction::JUMPDEST: { // Nothing to do break; } case Instruction::PC: { auto value = Constant::get(it - _basicBlock.begin() + _basicBlock.firstInstrIdx()); stack.push(value); break; } case Instruction::GAS: { _gasMeter.commitCostBlock(); stack.push(m_builder.CreateZExt(_runtimeManager.getGas(), Type::Word)); break; } case Instruction::ADDRESS: case Instruction::CALLER: case Instruction::ORIGIN: case Instruction::CALLVALUE: case Instruction::GASPRICE: case Instruction::COINBASE: case Instruction::DIFFICULTY: case Instruction::GASLIMIT: case Instruction::NUMBER: case Instruction::TIMESTAMP: { // Pushes an element of runtime data on stack auto value = _runtimeManager.get(inst); value = m_builder.CreateZExt(value, Type::Word); stack.push(value); break; } case Instruction::CODESIZE: stack.push(_runtimeManager.getCodeSize()); break; case Instruction::CALLDATASIZE: stack.push(_runtimeManager.getCallDataSize()); break; case Instruction::BLOCKHASH: { auto number = stack.pop(); auto hash = _ext.blockHash(number); stack.push(hash); break; } case Instruction::BALANCE: { auto address = stack.pop(); auto value = _ext.balance(address); stack.push(value); break; } case Instruction::EXTCODESIZE: { auto addr = stack.pop(); auto codeRef = _ext.extcode(addr); stack.push(codeRef.size); break; } case Instruction::CALLDATACOPY: { auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto srcPtr = _runtimeManager.getCallData(); auto srcSize = _runtimeManager.getCallDataSize(); _memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes); break; } case Instruction::CODECOPY: { auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto srcPtr = _runtimeManager.getCode(); // TODO: Code & its size are constants, feature #80814234 auto srcSize = _runtimeManager.getCodeSize(); _memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes); break; } case Instruction::EXTCODECOPY: { auto addr = stack.pop(); auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto codeRef = _ext.extcode(addr); _memory.copyBytes(codeRef.ptr, codeRef.size, srcIdx, destMemIdx, reqBytes); break; } case Instruction::CALLDATALOAD: { auto idx = stack.pop(); auto value = _ext.calldataload(idx); stack.push(value); break; } case Instruction::CREATE: { auto endowment = stack.pop(); auto initOff = stack.pop(); auto initSize = stack.pop(); _memory.require(initOff, initSize); _gasMeter.commitCostBlock(); auto address = _ext.create(endowment, initOff, initSize); stack.push(address); break; } case Instruction::CALL: case Instruction::CALLCODE: { auto callGas = stack.pop(); auto codeAddress = stack.pop(); auto value = stack.pop(); auto inOff = stack.pop(); auto inSize = stack.pop(); auto outOff = stack.pop(); auto outSize = stack.pop(); _gasMeter.commitCostBlock(); // Require memory for in and out buffers _memory.require(outOff, outSize); // Out buffer first as we guess it will be after the in one _memory.require(inOff, inSize); auto receiveAddress = codeAddress; if (inst == Instruction::CALLCODE) receiveAddress = _runtimeManager.get(RuntimeData::Address); auto ret = _ext.call(callGas, receiveAddress, value, inOff, inSize, outOff, outSize, codeAddress); _gasMeter.count(m_builder.getInt64(0), _runtimeManager.getJmpBuf(), _runtimeManager.getGasPtr()); stack.push(ret); break; } case Instruction::RETURN: { auto index = stack.pop(); auto size = stack.pop(); _memory.require(index, size); _runtimeManager.registerReturnData(index, size); _runtimeManager.exit(ReturnCode::Return); break; } case Instruction::SUICIDE: { _runtimeManager.registerSuicide(stack.pop()); _runtimeManager.exit(ReturnCode::Suicide); break; } case Instruction::STOP: { m_builder.CreateBr(m_stopBB); break; } case Instruction::LOG0: case Instruction::LOG1: case Instruction::LOG2: case Instruction::LOG3: case Instruction::LOG4: { auto beginIdx = stack.pop(); auto numBytes = stack.pop(); _memory.require(beginIdx, numBytes); // This will commit the current cost block _gasMeter.countLogData(numBytes); std::array topics{{}}; auto numTopics = static_cast(inst) - static_cast(Instruction::LOG0); for (size_t i = 0; i < numTopics; ++i) topics[i] = stack.pop(); _ext.log(beginIdx, numBytes, topics); break; } default: // Invalid instruction - abort m_builder.CreateBr(m_abortBB); it = _basicBlock.end() - 1; // finish block compilation } } _gasMeter.commitCostBlock(); stack.finalize(m_builder, *_basicBlock.llvm()); // TODO: Use references m_builder.SetInsertPoint(_basicBlock.llvm()->getFirstNonPHI()); // TODO: Move to LocalStack::finalize _runtimeManager.checkStackLimit(stack.minSize(), stack.maxSize(), stack.size()); } } } }