/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>. */ /** @file FixedHash.h * @author Gav Wood <i@gavwood.com> * @date 2014 * * The FixedHash fixed-size "hash" container type. */ #pragma once #include <array> #include <cstdint> #include <algorithm> #include <boost/random/random_device.hpp> #include <boost/random/uniform_int_distribution.hpp> #include "CommonData.h" namespace dev { /// Compile-time calculation of Log2 of constant values. template <unsigned N> struct StaticLog2 { enum { result = 1 + StaticLog2<N/2>::result }; }; template <> struct StaticLog2<1> { enum { result = 0 }; }; extern boost::random_device s_fixedHashEngine; /// Fixed-size raw-byte array container type, with an API optimised for storing hashes. /// Transparently converts to/from the corresponding arithmetic type; this will /// assume the data contained in the hash is big-endian. template <unsigned N> class FixedHash { public: /// The corresponding arithmetic type. using Arith = boost::multiprecision::number<boost::multiprecision::cpp_int_backend<N * 8, N * 8, boost::multiprecision::unsigned_magnitude, boost::multiprecision::unchecked, void>>; /// The size of the container. enum { size = N }; /// A dummy flag to avoid accidental construction from pointer. enum ConstructFromPointerType { ConstructFromPointer }; /// Method to convert from a string. enum ConstructFromStringType { FromHex, FromBinary }; /// Method to convert from a string. enum ConstructFromHashType { AlignLeft, AlignRight, FailIfDifferent }; /// Construct an empty hash. FixedHash() { m_data.fill(0); } /// Construct from another hash, filling with zeroes or cropping as necessary. template <unsigned M> explicit FixedHash(FixedHash<M> const& _h, ConstructFromHashType _t = AlignLeft) { m_data.fill(0); unsigned c = std::min(M, N); for (unsigned i = 0; i < c; ++i) m_data[_t == AlignRight ? N - 1 - i : i] = _h[_t == AlignRight ? M - 1 - i : i]; } /// Convert from the corresponding arithmetic type. FixedHash(Arith const& _arith) { toBigEndian(_arith, m_data); } /// Convert from unsigned explicit FixedHash(unsigned _u) { toBigEndian(_u, m_data); } /// Explicitly construct, copying from a byte array. explicit FixedHash(bytes const& _b, ConstructFromHashType _t = FailIfDifferent) { if (_b.size() == N) memcpy(m_data.data(), _b.data(), std::min<unsigned>(_b.size(), N)); else { m_data.fill(0); if (_t != FailIfDifferent) { auto c = std::min<unsigned>(_b.size(), N); for (unsigned i = 0; i < c; ++i) m_data[_t == AlignRight ? N - 1 - i : i] = _b[_t == AlignRight ? _b.size() - 1 - i : i]; } } } /// Explicitly construct, copying from a byte array. explicit FixedHash(bytesConstRef _b, ConstructFromHashType _t = FailIfDifferent) { if (_b.size() == N) memcpy(m_data.data(), _b.data(), std::min<unsigned>(_b.size(), N)); else { m_data.fill(0); if (_t != FailIfDifferent) { auto c = std::min<unsigned>(_b.size(), N); for (unsigned i = 0; i < c; ++i) m_data[_t == AlignRight ? N - 1 - i : i] = _b[_t == AlignRight ? _b.size() - 1 - i : i]; } } } /// Explicitly construct, copying from a bytes in memory with given pointer. explicit FixedHash(byte const* _bs, ConstructFromPointerType) { memcpy(m_data.data(), _bs, N); } /// Explicitly construct, copying from a string. explicit FixedHash(std::string const& _s, ConstructFromStringType _t = FromHex, ConstructFromHashType _ht = FailIfDifferent): FixedHash(_t == FromHex ? fromHex(_s, WhenError::Throw) : dev::asBytes(_s), _ht) {} /// Convert to arithmetic type. operator Arith() const { return fromBigEndian<Arith>(m_data); } /// @returns true iff this is the empty hash. explicit operator bool() const { return std::any_of(m_data.begin(), m_data.end(), [](byte _b) { return _b != 0; }); } // The obvious comparison operators. bool operator==(FixedHash const& _c) const { return m_data == _c.m_data; } bool operator!=(FixedHash const& _c) const { return m_data != _c.m_data; } bool operator<(FixedHash const& _c) const { for (unsigned i = 0; i < N; ++i) if (m_data[i] < _c.m_data[i]) return true; else if (m_data[i] > _c.m_data[i]) return false; return false; } bool operator>=(FixedHash const& _c) const { return !operator<(_c); } bool operator<=(FixedHash const& _c) const { return operator==(_c) || operator<(_c); } bool operator>(FixedHash const& _c) const { return !operator<=(_c); } // The obvious binary operators. FixedHash& operator^=(FixedHash const& _c) { for (unsigned i = 0; i < N; ++i) m_data[i] ^= _c.m_data[i]; return *this; } FixedHash operator^(FixedHash const& _c) const { return FixedHash(*this) ^= _c; } FixedHash& operator|=(FixedHash const& _c) { for (unsigned i = 0; i < N; ++i) m_data[i] |= _c.m_data[i]; return *this; } FixedHash operator|(FixedHash const& _c) const { return FixedHash(*this) |= _c; } FixedHash& operator&=(FixedHash const& _c) { for (unsigned i = 0; i < N; ++i) m_data[i] &= _c.m_data[i]; return *this; } FixedHash operator&(FixedHash const& _c) const { return FixedHash(*this) &= _c; } FixedHash operator~() const { FixedHash ret; for (unsigned i = 0; i < N; ++i) ret[i] = ~m_data[i]; return ret; } // Big-endian increment. FixedHash& operator++() { for (unsigned i = size; i > 0 && !++m_data[--i]; ) {} return *this; } /// @returns true if all one-bits in @a _c are set in this object. bool contains(FixedHash const& _c) const { return (*this & _c) == _c; } /// @returns a particular byte from the hash. byte& operator[](unsigned _i) { return m_data[_i]; } /// @returns a particular byte from the hash. byte operator[](unsigned _i) const { return m_data[_i]; } /// @returns an abridged version of the hash as a user-readable hex string. std::string abridged() const { return toHex(ref().cropped(0, 4)) + "\342\200\246"; } /// @returns a version of the hash as a user-readable hex string that leaves out the middle part. std::string abridgedMiddle() const { return toHex(ref().cropped(0, 4)) + "\342\200\246" + toHex(ref().cropped(N - 4)); } /// @returns the hash as a user-readable hex string. std::string hex() const { return toHex(ref()); } /// @returns a mutable byte vector_ref to the object's data. bytesRef ref() { return bytesRef(m_data.data(), N); } /// @returns a constant byte vector_ref to the object's data. bytesConstRef ref() const { return bytesConstRef(m_data.data(), N); } /// @returns a mutable byte pointer to the object's data. byte* data() { return m_data.data(); } /// @returns a constant byte pointer to the object's data. byte const* data() const { return m_data.data(); } /// @returns a copy of the object's data as a byte vector. bytes asBytes() const { return bytes(data(), data() + N); } /// @returns a mutable reference to the object's data as an STL array. std::array<byte, N>& asArray() { return m_data; } /// @returns a constant reference to the object's data as an STL array. std::array<byte, N> const& asArray() const { return m_data; } /// Populate with random data. template <class Engine> void randomize(Engine& _eng) { for (auto& i: m_data) i = (uint8_t)boost::random::uniform_int_distribution<uint16_t>(0, 255)(_eng); } /// @returns a random valued object. static FixedHash random() { FixedHash ret; ret.randomize(s_fixedHashEngine); return ret; } struct hash { /// Make a hash of the object's data. size_t operator()(FixedHash const& _value) const { return boost::hash_range(_value.m_data.cbegin(), _value.m_data.cend()); } }; template <unsigned P, unsigned M> inline FixedHash& shiftBloom(FixedHash<M> const& _h) { return (*this |= _h.template bloomPart<P, N>()); } template <unsigned P, unsigned M> inline bool containsBloom(FixedHash<M> const& _h) { return contains(_h.template bloomPart<P, N>()); } template <unsigned P, unsigned M> inline FixedHash<M> bloomPart() const { unsigned const c_bloomBits = M * 8; unsigned const c_mask = c_bloomBits - 1; unsigned const c_bloomBytes = (StaticLog2<c_bloomBits>::result + 7) / 8; static_assert((M & (M - 1)) == 0, "M must be power-of-two"); static_assert(P * c_bloomBytes <= N, "out of range"); FixedHash<M> ret; byte const* p = data(); for (unsigned i = 0; i < P; ++i) { unsigned index = 0; for (unsigned j = 0; j < c_bloomBytes; ++j, ++p) index = (index << 8) | *p; index &= c_mask; ret[M - 1 - index / 8] |= (1 << (index % 8)); } return ret; } /// Returns the index of the first bit set to one, or size() * 8 if no bits are set. inline unsigned firstBitSet() const { unsigned ret = 0; for (auto d: m_data) if (d) for (;; ++ret, d <<= 1) if (d & 0x80) return ret; else {} else ret += 8; return ret; } void clear() { m_data.fill(0); } private: std::array<byte, N> m_data; ///< The binary data. }; template <unsigned T> class SecureFixedHash: private FixedHash<T> { public: using ConstructFromHashType = typename FixedHash<T>::ConstructFromHashType; using ConstructFromStringType = typename FixedHash<T>::ConstructFromStringType; using ConstructFromPointerType = typename FixedHash<T>::ConstructFromPointerType; SecureFixedHash() = default; explicit SecureFixedHash(bytes const& _b, ConstructFromHashType _t = FixedHash<T>::FailIfDifferent): FixedHash<T>(_b, _t) {} explicit SecureFixedHash(bytesConstRef _b, ConstructFromHashType _t = FixedHash<T>::FailIfDifferent): FixedHash<T>(_b, _t) {} explicit SecureFixedHash(bytesSec const& _b, ConstructFromHashType _t = FixedHash<T>::FailIfDifferent): FixedHash<T>(_b.ref(), _t) {} template <unsigned M> explicit SecureFixedHash(FixedHash<M> const& _h, ConstructFromHashType _t = FixedHash<T>::AlignLeft): FixedHash<T>(_h, _t) {} template <unsigned M> explicit SecureFixedHash(SecureFixedHash<M> const& _h, ConstructFromHashType _t = FixedHash<T>::AlignLeft): FixedHash<T>(_h.makeInsecure(), _t) {} explicit SecureFixedHash(std::string const& _s, ConstructFromStringType _t = FixedHash<T>::FromHex, ConstructFromHashType _ht = FixedHash<T>::FailIfDifferent): FixedHash<T>(_s, _t, _ht) {} explicit SecureFixedHash(bytes const* _d, ConstructFromPointerType _t): FixedHash<T>(_d, _t) {} ~SecureFixedHash() { ref().cleanse(); } SecureFixedHash<T>& operator=(SecureFixedHash<T> const& _c) { if (&_c == this) return *this; ref().cleanse(); FixedHash<T>::operator=(static_cast<FixedHash<T> const&>(_c)); return *this; } using FixedHash<T>::size; bytesSec asBytesSec() const { return bytesSec(ref()); } FixedHash<T> const& makeInsecure() const { return static_cast<FixedHash<T> const&>(*this); } FixedHash<T>& writable() { clear(); return static_cast<FixedHash<T>&>(*this); } using FixedHash<T>::operator bool; // The obvious comparison operators. bool operator==(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator==(static_cast<FixedHash<T> const&>(_c)); } bool operator!=(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator!=(static_cast<FixedHash<T> const&>(_c)); } bool operator<(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator<(static_cast<FixedHash<T> const&>(_c)); } bool operator>=(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator>=(static_cast<FixedHash<T> const&>(_c)); } bool operator<=(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator<=(static_cast<FixedHash<T> const&>(_c)); } bool operator>(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator>(static_cast<FixedHash<T> const&>(_c)); } using FixedHash<T>::operator==; using FixedHash<T>::operator!=; using FixedHash<T>::operator<; using FixedHash<T>::operator>=; using FixedHash<T>::operator<=; using FixedHash<T>::operator>; // The obvious binary operators. SecureFixedHash& operator^=(FixedHash<T> const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(_c); return *this; } SecureFixedHash operator^(FixedHash<T> const& _c) const { return SecureFixedHash(*this) ^= _c; } SecureFixedHash& operator|=(FixedHash<T> const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(_c); return *this; } SecureFixedHash operator|(FixedHash<T> const& _c) const { return SecureFixedHash(*this) |= _c; } SecureFixedHash& operator&=(FixedHash<T> const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(_c); return *this; } SecureFixedHash operator&(FixedHash<T> const& _c) const { return SecureFixedHash(*this) &= _c; } SecureFixedHash& operator^=(SecureFixedHash const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(static_cast<FixedHash<T> const&>(_c)); return *this; } SecureFixedHash operator^(SecureFixedHash const& _c) const { return SecureFixedHash(*this) ^= _c; } SecureFixedHash& operator|=(SecureFixedHash const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(static_cast<FixedHash<T> const&>(_c)); return *this; } SecureFixedHash operator|(SecureFixedHash const& _c) const { return SecureFixedHash(*this) |= _c; } SecureFixedHash& operator&=(SecureFixedHash const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(static_cast<FixedHash<T> const&>(_c)); return *this; } SecureFixedHash operator&(SecureFixedHash const& _c) const { return SecureFixedHash(*this) &= _c; } SecureFixedHash operator~() const { auto r = ~static_cast<FixedHash<T> const&>(*this); return static_cast<SecureFixedHash const&>(r); } using FixedHash<T>::abridged; using FixedHash<T>::abridgedMiddle; bytesConstRef ref() const { return FixedHash<T>::ref(); } byte const* data() const { return FixedHash<T>::data(); } static SecureFixedHash<T> random() { SecureFixedHash<T> ret; ret.randomize(s_fixedHashEngine); return ret; } using FixedHash<T>::firstBitSet; void clear() { ref().cleanse(); } }; /// Fast equality operator for h256. template<> inline bool FixedHash<32>::operator==(FixedHash<32> const& _other) const { const uint64_t* hash1 = (const uint64_t*)data(); const uint64_t* hash2 = (const uint64_t*)_other.data(); return (hash1[0] == hash2[0]) && (hash1[1] == hash2[1]) && (hash1[2] == hash2[2]) && (hash1[3] == hash2[3]); } /// Fast std::hash compatible hash function object for h256. template<> inline size_t FixedHash<32>::hash::operator()(FixedHash<32> const& value) const { uint64_t const* data = reinterpret_cast<uint64_t const*>(value.data()); return boost::hash_range(data, data + 4); } /// Stream I/O for the FixedHash class. template <unsigned N> inline std::ostream& operator<<(std::ostream& _out, FixedHash<N> const& _h) { _out << std::noshowbase << std::hex << std::setfill('0'); for (unsigned i = 0; i < N; ++i) _out << std::setw(2) << (int)_h[i]; _out << std::dec; return _out; } /// Stream I/O for the SecureFixedHash class. template <unsigned N> inline std::ostream& operator<<(std::ostream& _out, SecureFixedHash<N> const& _h) { _out << "SecureFixedHash#" << std::hex << typename FixedHash<N>::hash()(_h.makeInsecure()) << std::dec; return _out; } // Common types of FixedHash. using h2048 = FixedHash<256>; using h1024 = FixedHash<128>; using h520 = FixedHash<65>; using h512 = FixedHash<64>; using h256 = FixedHash<32>; using h160 = FixedHash<20>; using h128 = FixedHash<16>; using h64 = FixedHash<8>; using h512s = std::vector<h512>; using h256s = std::vector<h256>; using h160s = std::vector<h160>; using h256Set = std::set<h256>; using h160Set = std::set<h160>; using h256Hash = std::unordered_set<h256>; using h160Hash = std::unordered_set<h160>; /// Convert the given value into h160 (160-bit unsigned integer) using the right 20 bytes. inline h160 right160(h256 const& _t) { h160 ret; memcpy(ret.data(), _t.data() + 12, 20); return ret; } /// Convert the given value into h160 (160-bit unsigned integer) using the left 20 bytes. inline h160 left160(h256 const& _t) { h160 ret; memcpy(&ret[0], _t.data(), 20); return ret; } h128 fromUUID(std::string const& _uuid); std::string toUUID(h128 const& _uuid); inline std::string toString(h256s const& _bs) { std::ostringstream out; out << "[ "; for (auto i: _bs) out << i.abridged() << ", "; out << "]"; return out.str(); } } namespace std { /// Forward std::hash<dev::FixedHash> to dev::FixedHash::hash. template<> struct hash<dev::h64>: dev::h64::hash {}; template<> struct hash<dev::h128>: dev::h128::hash {}; template<> struct hash<dev::h160>: dev::h160::hash {}; template<> struct hash<dev::h256>: dev::h256::hash {}; template<> struct hash<dev::h512>: dev::h512::hash {}; }