/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file BlockChain.cpp
* @author Gav Wood
* @date 2014
*/
#include "BlockChain.h"
#include
#include
#include
#include
#include
#include
#include
#include "State.h"
#include "Defaults.h"
using namespace std;
using namespace dev;
using namespace dev::eth;
#define ETH_CATCH 1
std::ostream& dev::eth::operator<<(std::ostream& _out, BlockChain const& _bc)
{
string cmp = toBigEndianString(_bc.currentHash());
auto it = _bc.m_extrasDB->NewIterator(_bc.m_readOptions);
for (it->SeekToFirst(); it->Valid(); it->Next())
if (it->key().ToString() != "best")
{
BlockDetails d(RLP(it->value().ToString()));
_out << toHex(it->key().ToString()) << ": " << d.number << " @ " << d.parent << (cmp == it->key().ToString() ? " BEST" : "") << std::endl;
}
delete it;
return _out;
}
std::map const& dev::eth::genesisState()
{
static std::map s_ret;
if (s_ret.empty())
// Initialise.
for (auto i: vector({
"51ba59315b3a95761d0863b05ccc7a7f54703d99",
"e6716f9544a56c530d868e4bfbacb172315bdead",
"b9c015918bdaba24b4ff057a92a3873d6eb201be",
"1a26338f0d905e295fccb71fa9ea849ffa12aaf4",
"2ef47100e0787b915105fd5e3f4ff6752079d5cb",
"cd2a3d9f938e13cd947ec05abc7fe734df8dd826",
"6c386a4b26f73c802f34673f7248bb118f97424a",
"e4157b34ea9615cfbde6b4fda419828124b70c78"
}))
s_ret[Address(fromHex(i))] = AddressState(0, u256(1) << 200, h256(), EmptySHA3);
return s_ret;
}
BlockInfo* BlockChain::s_genesis = nullptr;
boost::shared_mutex BlockChain::x_genesis;
ldb::Slice dev::eth::toSlice(h256 _h, unsigned _sub)
{
#if ALL_COMPILERS_ARE_CPP11_COMPLIANT
static thread_local h256 h = _h ^ h256(u256(_sub));
return ldb::Slice((char const*)&h, 32);
#else
static boost::thread_specific_ptr t_h;
if (!t_h.get())
t_h.reset(new h256);
*t_h = _h ^ h256(u256(_sub));
return ldb::Slice((char const*)t_h.get(), 32);
#endif
}
bytes BlockChain::createGenesisBlock()
{
RLPStream block(3);
auto sha3EmptyList = sha3(RLPEmptyList);
h256 stateRoot;
{
MemoryDB db;
TrieDB state(&db);
state.init();
dev::eth::commit(genesisState(), db, state);
stateRoot = state.root();
}
block.appendList(13) << h256() << sha3EmptyList << h160();
block.append(stateRoot, false, true) << bytes() << c_genesisDifficulty << 0 << 0 << 1000000 << 0 << (unsigned)0 << string() << sha3(bytes(1, 42));
block.appendRaw(RLPEmptyList);
block.appendRaw(RLPEmptyList);
return block.out();
}
BlockChain::BlockChain(std::string _path, bool _killExisting)
{
// Initialise with the genesis as the last block on the longest chain.
m_genesisHash = BlockChain::genesis().hash;
m_genesisBlock = BlockChain::createGenesisBlock();
open(_path, _killExisting);
}
BlockChain::~BlockChain()
{
close();
}
void BlockChain::open(std::string _path, bool _killExisting)
{
if (_path.empty())
_path = Defaults::get()->m_dbPath;
boost::filesystem::create_directories(_path);
if (_killExisting)
{
boost::filesystem::remove_all(_path + "/blocks");
boost::filesystem::remove_all(_path + "/details");
}
ldb::Options o;
o.create_if_missing = true;
ldb::DB::Open(o, _path + "/blocks", &m_db);
ldb::DB::Open(o, _path + "/details", &m_extrasDB);
if (!m_db)
throw DatabaseAlreadyOpen();
if (!m_extrasDB)
throw DatabaseAlreadyOpen();
if (!details(m_genesisHash))
{
// Insert details of genesis block.
m_details[m_genesisHash] = BlockDetails(0, c_genesisDifficulty, h256(), {}, h256());
auto r = m_details[m_genesisHash].rlp();
m_extrasDB->Put(m_writeOptions, ldb::Slice((char const*)&m_genesisHash, 32), (ldb::Slice)dev::ref(r));
}
checkConsistency();
// TODO: Implement ability to rebuild details map from DB.
std::string l;
m_extrasDB->Get(m_readOptions, ldb::Slice("best"), &l);
m_lastBlockHash = l.empty() ? m_genesisHash : *(h256*)l.data();
cnote << "Opened blockchain DB. Latest: " << currentHash();
}
void BlockChain::close()
{
cnote << "Closing blockchain DB";
delete m_extrasDB;
delete m_db;
m_lastBlockHash = m_genesisHash;
m_details.clear();
m_blooms.clear();
m_traces.clear();
m_cache.clear();
}
template
bool contains(T const& _t, V const& _v)
{
for (auto const& i: _t)
if (i == _v)
return true;
return false;
}
inline string toString(h256s const& _bs)
{
ostringstream out;
out << "[ ";
for (auto i: _bs)
out << i.abridged() << ", ";
out << "]";
return out.str();
}
h256s BlockChain::sync(BlockQueue& _bq, OverlayDB const& _stateDB, unsigned _max)
{
_bq.tick(*this);
vector blocks;
_bq.drain(blocks);
h256s ret;
for (auto const& block: blocks)
{
try
{
for (auto h: import(block, _stateDB))
if (!_max--)
break;
else
ret.push_back(h);
}
catch (UnknownParent)
{
cwarn << "Unknown parent of block!!!" << BlockInfo::headerHash(block).abridged();
_bq.import(&block, *this);
}
catch (Exception const& _e)
{
cwarn << "Unexpected exception!" << _e.description();
_bq.import(&block, *this);
}
catch (...)
{}
}
_bq.doneDrain();
return ret;
}
h256s BlockChain::attemptImport(bytes const& _block, OverlayDB const& _stateDB) noexcept
{
try
{
return import(_block, _stateDB);
}
catch (...)
{
return h256s();
}
}
h256s BlockChain::import(bytes const& _block, OverlayDB const& _db)
{
// VERIFY: populates from the block and checks the block is internally coherent.
BlockInfo bi;
#if ETH_CATCH
try
#endif
{
bi.populate(&_block);
bi.verifyInternals(&_block);
}
#if ETH_CATCH
catch (Exception const& _e)
{
clog(BlockChainNote) << " Malformed block (" << _e.description() << ").";
throw;
}
#endif
auto newHash = BlockInfo::headerHash(_block);
// Check block doesn't already exist first!
if (isKnown(newHash))
{
clog(BlockChainNote) << newHash << ": Not new.";
throw AlreadyHaveBlock();
}
// Work out its number as the parent's number + 1
if (!isKnown(bi.parentHash))
{
clog(BlockChainNote) << newHash << ": Unknown parent " << bi.parentHash;
// We don't know the parent (yet) - discard for now. It'll get resent to us if we find out about its ancestry later on.
throw UnknownParent();
}
auto pd = details(bi.parentHash);
if (!pd)
cwarn << "Odd: details is returning false despite block known:" << RLP(pd.rlp());
// Check it's not crazy
if (bi.timestamp > (u256)time(0))
{
clog(BlockChainNote) << newHash << ": Future time " << bi.timestamp << " (now at " << time(0) << ")";
// Block has a timestamp in the future. This is no good.
throw FutureTime();
}
clog(BlockChainNote) << "Attempting import of " << newHash.abridged() << "...";
u256 td;
#if ETH_CATCH
try
#endif
{
// Check transactions are valid and that they result in a state equivalent to our state_root.
// Get total difficulty increase and update state, checking it.
State s(bi.coinbaseAddress, _db);
auto tdIncrease = s.enactOn(&_block, bi, *this);
auto b = s.bloom();
BlockBlooms bb;
BlockTraces bt;
for (unsigned i = 0; i < s.pending().size(); ++i)
{
bt.traces.push_back(s.changesFromPending(i));
bb.blooms.push_back(s.changesFromPending(i).bloom());
}
s.cleanup(true);
td = pd.totalDifficulty + tdIncrease;
#if ETH_PARANOIA
checkConsistency();
#endif
// All ok - insert into DB
{
WriteGuard l(x_details);
m_details[newHash] = BlockDetails((unsigned)pd.number + 1, td, bi.parentHash, {}, b);
m_details[bi.parentHash].children.push_back(newHash);
}
{
WriteGuard l(x_blooms);
m_blooms[newHash] = bb;
}
{
WriteGuard l(x_traces);
m_traces[newHash] = bt;
}
m_extrasDB->Put(m_writeOptions, toSlice(newHash), (ldb::Slice)dev::ref(m_details[newHash].rlp()));
m_extrasDB->Put(m_writeOptions, toSlice(bi.parentHash), (ldb::Slice)dev::ref(m_details[bi.parentHash].rlp()));
m_extrasDB->Put(m_writeOptions, toSlice(newHash, 1), (ldb::Slice)dev::ref(m_blooms[newHash].rlp()));
m_extrasDB->Put(m_writeOptions, toSlice(newHash, 2), (ldb::Slice)dev::ref(m_traces[newHash].rlp()));
m_db->Put(m_writeOptions, toSlice(newHash), (ldb::Slice)ref(_block));
#if ETH_PARANOIA
checkConsistency();
#endif
}
#if ETH_CATCH
catch (Exception const& _e)
{
clog(BlockChainNote) << " Malformed block (" << _e.description() << ").";
throw;
}
#endif
// cnote << "Parent " << bi.parentHash << " has " << details(bi.parentHash).children.size() << " children.";
h256s ret;
// This might be the new best block...
h256 last = currentHash();
if (td > details(last).totalDifficulty)
{
ret = treeRoute(last, newHash);
{
WriteGuard l(x_lastBlockHash);
m_lastBlockHash = newHash;
}
m_extrasDB->Put(m_writeOptions, ldb::Slice("best"), ldb::Slice((char const*)&newHash, 32));
clog(BlockChainNote) << " Imported and best" << td << ". Has" << (details(bi.parentHash).children.size() - 1) << "siblings. Route:" << toString(ret);
}
else
{
clog(BlockChainNote) << " Imported but not best (oTD:" << details(last).totalDifficulty << " > TD:" << td << ")";
}
return ret;
}
h256s BlockChain::treeRoute(h256 _from, h256 _to, h256* o_common, bool _pre, bool _post) const
{
// cdebug << "treeRoute" << _from.abridged() << "..." << _to.abridged();
if (!_from || !_to)
{
return h256s();
}
h256s ret;
h256s back;
unsigned fn = details(_from).number;
unsigned tn = details(_to).number;
// cdebug << "treeRoute" << fn << "..." << tn;
while (fn > tn)
{
if (_pre)
ret.push_back(_from);
_from = details(_from).parent;
fn--;
// cdebug << "from:" << fn << _from.abridged();
}
while (fn < tn)
{
if (_post)
back.push_back(_to);
_to = details(_to).parent;
tn--;
// cdebug << "to:" << tn << _to.abridged();
}
while (_from != _to)
{
assert(_from);
assert(_to);
_from = details(_from).parent;
_to = details(_to).parent;
if (_pre)
ret.push_back(_from);
if (_post)
back.push_back(_to);
fn--;
tn--;
// cdebug << "from:" << fn << _from.abridged() << "; to:" << tn << _to.abridged();
}
if (o_common)
*o_common = _from;
ret.reserve(ret.size() + back.size());
for (auto it = back.cbegin(); it != back.cend(); ++it)
ret.push_back(*it);
return ret;
}
void BlockChain::checkConsistency()
{
m_details.clear();
ldb::Iterator* it = m_db->NewIterator(m_readOptions);
for (it->SeekToFirst(); it->Valid(); it->Next())
if (it->key().size() == 32)
{
h256 h((byte const*)it->key().data(), h256::ConstructFromPointer);
auto dh = details(h);
auto p = dh.parent;
if (p != h256())
{
auto dp = details(p);
assert(contains(dp.children, h));
assert(dp.number == dh.number - 1);
}
}
delete it;
}
h256Set BlockChain::allUnclesFrom(h256 _parent) const
{
// Get all uncles cited given a parent (i.e. featured as uncles/main in parent, parent + 1, ... parent + 5).
h256Set ret;
h256 p = _parent;
for (unsigned i = 0; i < 6 && p != m_genesisHash; ++i, p = details(p).parent)
{
ret.insert(p); // TODO: check: should this be details(p).parent?
for (auto i: RLP(block(p))[2])
ret.insert(sha3(i.data()));
}
return ret;
}
bool BlockChain::isKnown(h256 _hash) const
{
if (_hash == m_genesisHash)
return true;
{
ReadGuard l(x_cache);
if (m_cache.count(_hash))
return true;
}
string d;
m_db->Get(m_readOptions, ldb::Slice((char const*)&_hash, 32), &d);
return !!d.size();
}
bytes BlockChain::block(h256 _hash) const
{
if (_hash == m_genesisHash)
return m_genesisBlock;
{
ReadGuard l(x_cache);
auto it = m_cache.find(_hash);
if (it != m_cache.end())
return it->second;
}
string d;
m_db->Get(m_readOptions, ldb::Slice((char const*)&_hash, 32), &d);
WriteGuard l(x_cache);
m_cache[_hash].resize(d.size());
memcpy(m_cache[_hash].data(), d.data(), d.size());
if (!d.size())
cwarn << "Couldn't find requested block:" << _hash.abridged();
return m_cache[_hash];
}
h256 BlockChain::numberHash(unsigned _n) const
{
if (!_n)
return genesisHash();
h256 ret = currentHash();
for (; _n < details().number; ++_n, ret = details(ret).parent) {}
return ret;
}