// Copyright (c) 2013 Pieter Wuille // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef _SECP256K1_NUM_ #define _SECP256K1_NUM_ #if defined(USE_NUM_GMP) #include "num_gmp.h" #elif defined(USE_NUM_OPENSSL) #include "num_openssl.h" #else #error "Please select num implementation" #endif /** Initialize a number. */ void static secp256k1_num_init(secp256k1_num_t *r); /** Free a number. */ void static secp256k1_num_free(secp256k1_num_t *r); /** Copy a number. */ void static secp256k1_num_copy(secp256k1_num_t *r, const secp256k1_num_t *a); /** Convert a number's absolute value to a binary big-endian string. * There must be enough place. */ void static secp256k1_num_get_bin(unsigned char *r, unsigned int rlen, const secp256k1_num_t *a); /** Set a number to the value of a binary big-endian string. */ void static secp256k1_num_set_bin(secp256k1_num_t *r, const unsigned char *a, unsigned int alen); /** Set a number equal to a (signed) integer. */ void static secp256k1_num_set_int(secp256k1_num_t *r, int a); /** Compute a modular inverse. The input must be less than the modulus. */ void static secp256k1_num_mod_inverse(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *m); /** Multiply two numbers modulo another. */ void static secp256k1_num_mod_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b, const secp256k1_num_t *m); /** Compare the absolute value of two numbers. */ int static secp256k1_num_cmp(const secp256k1_num_t *a, const secp256k1_num_t *b); /** Add two (signed) numbers. */ void static secp256k1_num_add(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); /** Subtract two (signed) numbers. */ void static secp256k1_num_sub(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); /** Multiply two (signed) numbers. */ void static secp256k1_num_mul(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); /** Divide two (signed) numbers. */ void static secp256k1_num_div(secp256k1_num_t *r, const secp256k1_num_t *a, const secp256k1_num_t *b); /** Replace a number by its remainder modulo m. M's sign is ignored. The result is a number between 0 and m-1, even if r was negative. */ void static secp256k1_num_mod(secp256k1_num_t *r, const secp256k1_num_t *m); /** Calculate the number of bits in (the absolute value of) a number. */ int static secp256k1_num_bits(const secp256k1_num_t *a); /** Right-shift the passed number by bits bits, and return those bits. */ int static secp256k1_num_shift(secp256k1_num_t *r, int bits); /** Check whether a number is zero. */ int static secp256k1_num_is_zero(const secp256k1_num_t *a); /** Check whether a number is odd. */ int static secp256k1_num_is_odd(const secp256k1_num_t *a); /** Check whether a number is strictly negative. */ int static secp256k1_num_is_neg(const secp256k1_num_t *a); /** Check whether a particular bit is set in a number. */ int static secp256k1_num_get_bit(const secp256k1_num_t *a, int pos); /** Increase a number by 1. */ void static secp256k1_num_inc(secp256k1_num_t *r); /** Set a number equal to the value of a hex string (unsigned). */ void static secp256k1_num_set_hex(secp256k1_num_t *r, const char *a, int alen); /** Convert (the absolute value of) a number to a hexadecimal string. */ void static secp256k1_num_get_hex(char *r, int rlen, const secp256k1_num_t *a); /** Split a number into a low and high part. */ void static secp256k1_num_split(secp256k1_num_t *rl, secp256k1_num_t *rh, const secp256k1_num_t *a, int bits); /** Change a number's sign. */ void static secp256k1_num_negate(secp256k1_num_t *r); #endif