/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file NodeTable.cpp * @author Alex Leverington * @date 2014 */ #include "NodeTable.h" using namespace std; using namespace dev; using namespace dev::p2p; const char* NodeTableWarn::name() { return "!P!"; } const char* NodeTableNote::name() { return "*P*"; } const char* NodeTableMessageSummary::name() { return "-P-"; } const char* NodeTableMessageDetail::name() { return "=P="; } const char* NodeTableConnect::name() { return "+P+"; } const char* NodeTableEvent::name() { return "+P+"; } const char* NodeTableTimer::name() { return "+P+"; } const char* NodeTableUpdate::name() { return "+P+"; } const char* NodeTableTriviaSummary::name() { return "-P-"; } const char* NodeTableTriviaDetail::name() { return "=P="; } const char* NodeTableAllDetail::name() { return "=P="; } const char* NodeTableEgress::name() { return ">>P"; } const char* NodeTableIngress::name() { return "<connect(); doDiscovery(); } catch (std::exception const& _e) { clog(NetWarn) << "Exception connecting NodeTable socket: " << _e.what(); clog(NetWarn) << "Discovery disabled."; } } NodeTable::~NodeTable() { m_socketPointer->disconnect(); m_timers.stop(); } void NodeTable::processEvents() { if (m_nodeEventHandler) m_nodeEventHandler->processEvents(); } shared_ptr NodeTable::addNode(Node const& _node, NodeRelation _relation) { if (_relation == Known) { shared_ptr ret(new NodeEntry(m_node.id, _node.id, _node.endpoint)); ret->pending = false; DEV_GUARDED(x_nodes) m_nodes[_node.id] = ret; noteActiveNode(_node.id, _node.endpoint); return ret; } if (!_node.endpoint) return shared_ptr(); // ping address to recover nodeid if nodeid is empty if (!_node.id) { DEV_GUARDED(x_nodes) clog(NodeTableConnect) << "Sending public key discovery Ping to" << (bi::udp::endpoint)_node.endpoint << "(Advertising:" << (bi::udp::endpoint)m_node.endpoint << ")"; DEV_GUARDED(x_pubkDiscoverPings) m_pubkDiscoverPings[_node.endpoint.address] = std::chrono::steady_clock::now(); ping(_node.endpoint); return shared_ptr(); } DEV_GUARDED(x_nodes) if (m_nodes.count(_node.id)) return m_nodes[_node.id]; shared_ptr ret(new NodeEntry(m_node.id, _node.id, _node.endpoint)); DEV_GUARDED(x_nodes) m_nodes[_node.id] = ret; clog(NodeTableConnect) << "addNode pending for" << _node.endpoint; ping(_node.endpoint); return ret; } list NodeTable::nodes() const { list nodes; DEV_GUARDED(x_nodes) for (auto& i: m_nodes) nodes.push_back(i.second->id); return nodes; } list NodeTable::snapshot() const { list ret; DEV_GUARDED(x_state) for (auto const& s: m_state) for (auto const& np: s.nodes) if (auto n = np.lock()) ret.push_back(*n); return ret; } Node NodeTable::node(NodeId const& _id) { Guard l(x_nodes); if (m_nodes.count(_id)) { auto entry = m_nodes[_id]; return Node(_id, entry->endpoint, entry->required); } return UnspecifiedNode; } shared_ptr NodeTable::nodeEntry(NodeId _id) { Guard l(x_nodes); return m_nodes.count(_id) ? m_nodes[_id] : shared_ptr(); } void NodeTable::doDiscover(NodeId _node, unsigned _round, shared_ptr>> _tried) { // NOTE: ONLY called by doDiscovery! if (!m_socketPointer->isOpen()) return; if (_round == s_maxSteps) { clog(NodeTableEvent) << "Terminating discover after " << _round << " rounds."; doDiscovery(); return; } else if (!_round && !_tried) // initialized _tried on first round _tried.reset(new set>()); auto nearest = nearestNodeEntries(_node); list> tried; for (unsigned i = 0; i < nearest.size() && tried.size() < s_alpha; i++) if (!_tried->count(nearest[i])) { auto r = nearest[i]; tried.push_back(r); FindNode p(r->endpoint, _node); p.sign(m_secret); DEV_GUARDED(x_findNodeTimeout) m_findNodeTimeout.push_back(make_pair(r->id, chrono::steady_clock::now())); m_socketPointer->send(p); } if (tried.empty()) { clog(NodeTableEvent) << "Terminating discover after " << _round << " rounds."; doDiscovery(); return; } while (!tried.empty()) { _tried->insert(tried.front()); tried.pop_front(); } m_timers.schedule(c_reqTimeout.count() * 2, [this, _node, _round, _tried](boost::system::error_code const& _ec) { if (_ec) clog(NodeTableWarn) << "Discovery timer canceled: " << _ec.value() << _ec.message(); if (995 == _ec.value() || m_timers.isStopped()) return; // Error code 995 means that the timer was probably aborted. It usually happens when "this" object // is deallocated, in which case subsequent call to doDiscover() would cause a crash. // We can not rely on m_timers.isStopped(), because "this" pointer was captured by the lambda, // and therefore, in case of deallocation m_timers object no longer exists. doDiscover(_node, _round + 1, _tried); }); } vector> NodeTable::nearestNodeEntries(NodeId _target) { // send s_alpha FindNode packets to nodes we know, closest to target static unsigned lastBin = s_bins - 1; unsigned head = distance(m_node.id, _target); unsigned tail = head == 0 ? lastBin : (head - 1) % s_bins; map>> found; unsigned count = 0; // if d is 0, then we roll look forward, if last, we reverse, else, spread from d if (head > 1 && tail != lastBin) while (head != tail && head < s_bins && count < s_bucketSize) { Guard l(x_state); for (auto const& n: m_state[head].nodes) if (auto p = n.lock()) { if (count < s_bucketSize) found[distance(_target, p->id)].push_back(p); else break; } if (count < s_bucketSize && tail) for (auto const& n: m_state[tail].nodes) if (auto p = n.lock()) { if (count < s_bucketSize) found[distance(_target, p->id)].push_back(p); else break; } head++; if (tail) tail--; } else if (head < 2) while (head < s_bins && count < s_bucketSize) { Guard l(x_state); for (auto const& n: m_state[head].nodes) if (auto p = n.lock()) { if (count < s_bucketSize) found[distance(_target, p->id)].push_back(p); else break; } head++; } else while (tail > 0 && count < s_bucketSize) { Guard l(x_state); for (auto const& n: m_state[tail].nodes) if (auto p = n.lock()) { if (count < s_bucketSize) found[distance(_target, p->id)].push_back(p); else break; } tail--; } vector> ret; for (auto& nodes: found) for (auto const& n: nodes.second) if (ret.size() < s_bucketSize && !!n->endpoint && n->endpoint.isAllowed()) ret.push_back(n); return ret; } void NodeTable::ping(NodeIPEndpoint _to) const { NodeIPEndpoint src; DEV_GUARDED(x_nodes) src = m_node.endpoint; PingNode p(src, _to); p.sign(m_secret); m_socketPointer->send(p); } void NodeTable::ping(NodeEntry* _n) const { if (_n) ping(_n->endpoint); } void NodeTable::evict(shared_ptr _leastSeen, shared_ptr _new) { if (!m_socketPointer->isOpen()) return; unsigned evicts; DEV_GUARDED(x_evictions) { m_evictions.push_back(EvictionTimeout(make_pair(_leastSeen->id,chrono::steady_clock::now()), _new->id)); evicts = m_evictions.size(); } if (evicts == 1) doCheckEvictions(); ping(_leastSeen.get()); } void NodeTable::noteActiveNode(Public const& _pubk, bi::udp::endpoint const& _endpoint) { if (_pubk == m_node.address() || !NodeIPEndpoint(_endpoint.address(), _endpoint.port(), _endpoint.port()).isAllowed()) return; shared_ptr node = nodeEntry(_pubk); if (!!node && !node->pending) { clog(NodeTableConnect) << "Noting active node:" << _pubk << _endpoint.address().to_string() << ":" << _endpoint.port(); node->endpoint.address = _endpoint.address(); node->endpoint.udpPort = _endpoint.port(); shared_ptr contested; { Guard l(x_state); NodeBucket& s = bucket_UNSAFE(node.get()); bool removed = false; s.nodes.remove_if([&node, &removed](weak_ptr const& n) { if (n.lock() == node) removed = true; return removed; }); if (s.nodes.size() >= s_bucketSize) { if (removed) clog(NodeTableWarn) << "DANGER: Bucket overflow when swapping node position."; // It's only contested iff nodeentry exists contested = s.nodes.front().lock(); if (!contested) { s.nodes.pop_front(); s.nodes.push_back(node); if (!removed && m_nodeEventHandler) m_nodeEventHandler->appendEvent(node->id, NodeEntryAdded); } } else { s.nodes.push_back(node); if (!removed && m_nodeEventHandler) m_nodeEventHandler->appendEvent(node->id, NodeEntryAdded); } } if (contested) evict(contested, node); } } void NodeTable::dropNode(shared_ptr _n) { // remove from nodetable { Guard l(x_state); NodeBucket& s = bucket_UNSAFE(_n.get()); s.nodes.remove_if([&_n](weak_ptr n) { return n.lock() == _n; }); } // notify host clog(NodeTableUpdate) << "p2p.nodes.drop " << _n->id; if (m_nodeEventHandler) m_nodeEventHandler->appendEvent(_n->id, NodeEntryDropped); } NodeTable::NodeBucket& NodeTable::bucket_UNSAFE(NodeEntry const* _n) { return m_state[_n->distance - 1]; } void NodeTable::onReceived(UDPSocketFace*, bi::udp::endpoint const& _from, bytesConstRef _packet) { // h256 + Signature + type + RLP (smallest possible packet is empty neighbours packet which is 3 bytes) if (_packet.size() < h256::size + Signature::size + 1 + 3) { clog(NodeTableTriviaSummary) << "Invalid message size from " << _from.address().to_string() << ":" << _from.port(); return; } bytesConstRef hashedBytes(_packet.cropped(h256::size, _packet.size() - h256::size)); h256 hashSigned(sha3(hashedBytes)); if (!_packet.cropped(0, h256::size).contentsEqual(hashSigned.asBytes())) { clog(NodeTableTriviaSummary) << "Invalid message hash from " << _from.address().to_string() << ":" << _from.port(); return; } bytesConstRef signedBytes(hashedBytes.cropped(Signature::size, hashedBytes.size() - Signature::size)); // todo: verify sig via known-nodeid and MDC bytesConstRef sigBytes(_packet.cropped(h256::size, Signature::size)); Public nodeid(dev::recover(*(Signature const*)sigBytes.data(), sha3(signedBytes))); if (!nodeid) { clog(NodeTableTriviaSummary) << "Invalid message signature from " << _from.address().to_string() << ":" << _from.port(); return; } unsigned packetType = signedBytes[0]; bytesConstRef rlpBytes(_packet.cropped(h256::size + Signature::size + 1)); try { RLP rlp(rlpBytes); switch (packetType) { case Pong::type: { Pong in = Pong::fromBytesConstRef(_from, rlpBytes); // whenever a pong is received, check if it's in m_evictions bool found = false; EvictionTimeout evictionEntry; DEV_GUARDED(x_evictions) for (auto it = m_evictions.begin(); it != m_evictions.end(); ++it) if (it->first.first == nodeid && it->first.second > std::chrono::steady_clock::now()) { found = true; evictionEntry = *it; m_evictions.erase(it); break; } if (found) { if (auto n = nodeEntry(evictionEntry.second)) dropNode(n); if (auto n = nodeEntry(evictionEntry.first.first)) n->pending = false; } else { // if not, check if it's known/pending or a pubk discovery ping if (auto n = nodeEntry(nodeid)) n->pending = false; else { DEV_GUARDED(x_pubkDiscoverPings) { if (!m_pubkDiscoverPings.count(_from.address())) return; // unsolicited pong; don't note node as active m_pubkDiscoverPings.erase(_from.address()); } if (!haveNode(nodeid)) addNode(Node(nodeid, NodeIPEndpoint(_from.address(), _from.port(), _from.port()))); } } // update our endpoint address and UDP port DEV_GUARDED(x_nodes) { if ((!m_node.endpoint || !m_node.endpoint.isAllowed()) && isPublicAddress(in.destination.address)) m_node.endpoint.address = in.destination.address; m_node.endpoint.udpPort = in.destination.udpPort; } clog(NodeTableConnect) << "PONG from " << nodeid << _from; break; } case Neighbours::type: { bool expected = false; auto now = chrono::steady_clock::now(); DEV_GUARDED(x_findNodeTimeout) m_findNodeTimeout.remove_if([&](NodeIdTimePoint const& t) { if (t.first == nodeid && now - t.second < c_reqTimeout) expected = true; else if (t.first == nodeid) return true; return false; }); if (!expected) { clog(NetConnect) << "Dropping unsolicited neighbours packet from " << _from.address(); break; } Neighbours in = Neighbours::fromBytesConstRef(_from, rlpBytes); for (auto n: in.neighbours) addNode(Node(n.node, n.endpoint)); break; } case FindNode::type: { FindNode in = FindNode::fromBytesConstRef(_from, rlpBytes); if (RLPXDatagramFace::secondsSinceEpoch() > in.ts) { clog(NodeTableTriviaSummary) << "Received expired FindNode from " << _from.address().to_string() << ":" << _from.port(); return; } vector> nearest = nearestNodeEntries(in.target); static unsigned const nlimit = (m_socketPointer->maxDatagramSize - 109) / 90; for (unsigned offset = 0; offset < nearest.size(); offset += nlimit) { Neighbours out(_from, nearest, offset, nlimit); out.sign(m_secret); if (out.data.size() > 1280) clog(NetWarn) << "Sending truncated datagram, size: " << out.data.size(); m_socketPointer->send(out); } break; } case PingNode::type: { PingNode in = PingNode::fromBytesConstRef(_from, rlpBytes); if (in.version < dev::p2p::c_protocolVersion) { if (in.version == 3) { compat::Pong p(in.source); p.echo = sha3(rlpBytes); p.sign(m_secret); m_socketPointer->send(p); } else return; } if (RLPXDatagramFace::secondsSinceEpoch() > in.ts) { clog(NodeTableTriviaSummary) << "Received expired PingNode from " << _from.address().to_string() << ":" << _from.port(); return; } in.source.address = _from.address(); in.source.udpPort = _from.port(); addNode(Node(nodeid, in.source)); Pong p(in.source); p.echo = sha3(rlpBytes); p.sign(m_secret); m_socketPointer->send(p); break; } default: clog(NodeTableWarn) << "Invalid message, " << hex << packetType << ", received from " << _from.address().to_string() << ":" << dec << _from.port(); return; } noteActiveNode(nodeid, _from); } catch (...) { clog(NodeTableWarn) << "Exception processing message from " << _from.address().to_string() << ":" << _from.port(); } } void NodeTable::doCheckEvictions() { m_timers.schedule(c_evictionCheckInterval.count(), [this](boost::system::error_code const& _ec) { if (_ec) return; bool evictionsRemain = false; list> drop; { Guard le(x_evictions); Guard ln(x_nodes); for (auto& e: m_evictions) if (chrono::steady_clock::now() - e.first.second > c_reqTimeout) if (m_nodes.count(e.second)) drop.push_back(m_nodes[e.second]); evictionsRemain = (m_evictions.size() - drop.size() > 0); } drop.unique(); for (auto n: drop) dropNode(n); if (evictionsRemain) doCheckEvictions(); }); } void NodeTable::doDiscovery() { m_timers.schedule(c_bucketRefresh.count(), [this](boost::system::error_code const& ec) { if (ec) return; clog(NodeTableEvent) << "performing random discovery"; NodeId randNodeId; crypto::Nonce::get().ref().copyTo(randNodeId.ref().cropped(0, h256::size)); crypto::Nonce::get().ref().copyTo(randNodeId.ref().cropped(h256::size, h256::size)); doDiscover(randNodeId); }); } void PingNode::streamRLP(RLPStream& _s) const { _s.appendList(4); _s << dev::p2p::c_protocolVersion; source.streamRLP(_s); destination.streamRLP(_s); _s << ts; } void PingNode::interpretRLP(bytesConstRef _bytes) { RLP r(_bytes); if (r.itemCountStrict() == 4 && r[0].isInt() && r[0].toInt(RLP::Strict) == dev::p2p::c_protocolVersion) { version = dev::p2p::c_protocolVersion; source.interpretRLP(r[1]); destination.interpretRLP(r[2]); ts = r[3].toInt(RLP::Strict); } else version = r[0].toInt(RLP::Strict); } void Pong::streamRLP(RLPStream& _s) const { _s.appendList(3); destination.streamRLP(_s); _s << echo << ts; } void Pong::interpretRLP(bytesConstRef _bytes) { RLP r(_bytes); destination.interpretRLP(r[0]); echo = (h256)r[1]; ts = r[2].toInt(); } void compat::Pong::interpretRLP(bytesConstRef _bytes) { RLP r(_bytes); echo = (h256)r[0]; ts = r[1].toInt(); }