/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file crypto.cpp * @author Alex Leverington * @author Gav Wood * @date 2014 * Crypto test functions. */ #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace dev; using namespace dev::crypto; using namespace CryptoPP; BOOST_AUTO_TEST_SUITE(devcrypto) static Secp256k1 s_secp256k1; static CryptoPP::AutoSeededRandomPool s_rng; static CryptoPP::OID s_curveOID(CryptoPP::ASN1::secp256k1()); static CryptoPP::DL_GroupParameters_EC s_params(s_curveOID); static CryptoPP::DL_GroupParameters_EC::EllipticCurve s_curve(s_params.GetCurve()); BOOST_AUTO_TEST_CASE(emptySHA3Types) { h256 emptyListSHA3(fromHex("1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347")); BOOST_REQUIRE_EQUAL(emptyListSHA3, EmptyListSHA3); h256 emptySHA3(fromHex("c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470")); BOOST_REQUIRE_EQUAL(emptySHA3, EmptySHA3); } BOOST_AUTO_TEST_CASE(cryptopp_patch) { KeyPair k = KeyPair::create(); bytes io_text; s_secp256k1.decrypt(k.sec(), io_text); BOOST_REQUIRE_EQUAL(io_text.size(), 0); } BOOST_AUTO_TEST_CASE(verify_secert) { h256 empty; KeyPair kNot(empty); BOOST_REQUIRE(!kNot.address()); KeyPair k(sha3(empty)); BOOST_REQUIRE(k.address()); } BOOST_AUTO_TEST_CASE(common_encrypt_decrypt) { string message("Now is the time for all good persons to come to the aid of humanity."); bytes m = asBytes(message); bytesConstRef bcr(&m); KeyPair k = KeyPair::create(); bytes cipher; encrypt(k.pub(), bcr, cipher); BOOST_REQUIRE(cipher != asBytes(message) && cipher.size() > 0); bytes plain; decrypt(k.sec(), bytesConstRef(&cipher), plain); BOOST_REQUIRE(asString(plain) == message); BOOST_REQUIRE(plain == asBytes(message)); } BOOST_AUTO_TEST_CASE(cryptopp_cryptopp_secp256k1libport) { secp256k1_start(); // base secret Secret secret(sha3("privacy")); // we get ec params from signer ECDSA::Signer signer; // e := sha3(msg) bytes e(fromHex("0x01")); e.resize(32); int tests = 2; while (sha3(&e, &e), secret = sha3(secret.asBytes()), tests--) { KeyPair key(secret); Public pkey = key.pub(); signer.AccessKey().Initialize(s_params, secretToExponent(secret)); h256 he(sha3(e)); Integer heInt(he.asBytes().data(), 32); h256 k(crypto::kdf(secret, he)); Integer kInt(k.asBytes().data(), 32); kInt %= s_params.GetSubgroupOrder()-1; ECP::Point rp = s_params.ExponentiateBase(kInt); Integer const& q = s_params.GetGroupOrder(); Integer r = s_params.ConvertElementToInteger(rp); Integer kInv = kInt.InverseMod(q); Integer s = (kInv * (Integer(secret.asBytes().data(), 32)*r + heInt)) % q; BOOST_REQUIRE(!!r && !!s); Signature sig; sig[64] = rp.y.IsOdd() ? 1 : 0; r.Encode(sig.data(), 32); s.Encode(sig.data() + 32, 32); Public p = dev::recover(sig, he); BOOST_REQUIRE(p == pkey); // verify w/cryptopp BOOST_REQUIRE(s_secp256k1.verify(pkey, sig, bytesConstRef(&e))); // verify with secp256k1lib byte encpub[65] = {0x04}; memcpy(&encpub[1], pkey.data(), 64); byte dersig[72]; size_t cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, sig.data(), 64, DSA_P1363); BOOST_CHECK(cssz <= 72); BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(he.data(), sizeof(he), dersig, cssz, encpub, 65)); } } BOOST_AUTO_TEST_CASE(cryptopp_ecdsa_sipaseckp256k1) { secp256k1_start(); // cryptopp integer encoding Integer nHex("f2ee15ea639b73fa3db9b34a245bdfa015c260c598b211bf05a1ecc4b3e3b4f2H"); Integer nB(fromHex("f2ee15ea639b73fa3db9b34a245bdfa015c260c598b211bf05a1ecc4b3e3b4f2").data(), 32); BOOST_REQUIRE(nHex == nB); bytes sbytes(fromHex("0xFFFF")); Secret secret(sha3(sbytes)); KeyPair key(secret); bytes m(1, 0xff); int tests = 2; while (m[0]++, tests--) { h256 hm(sha3(m)); Integer hInt(hm.asBytes().data(), 32); h256 k(hm ^ key.sec()); Integer kInt(k.asBytes().data(), 32); // raw sign w/cryptopp (doesn't pass through cryptopp hash filter) ECDSA::Signer signer; signer.AccessKey().Initialize(s_params, secretToExponent(key.sec())); Integer r, s; signer.RawSign(kInt, hInt, r, s); // verify cryptopp raw-signature w/cryptopp ECDSA::Verifier verifier; verifier.AccessKey().Initialize(s_params, publicToPoint(key.pub())); Signature sigppraw; r.Encode(sigppraw.data(), 32); s.Encode(sigppraw.data() + 32, 32); BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), sigppraw.data(), 64)); // BOOST_REQUIRE(crypto::verify(key.pub(), sigppraw, bytesConstRef(&m))); BOOST_REQUIRE(dev::verify(key.pub(), sigppraw, hm)); // sign with cryptopp, verify, recover w/sec256lib Signature seclibsig(dev::sign(key.sec(), hm)); BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), seclibsig.data(), 64)); // BOOST_REQUIRE(crypto::verify(key.pub(), seclibsig, bytesConstRef(&m))); BOOST_REQUIRE(dev::verify(key.pub(), seclibsig, hm)); BOOST_REQUIRE(dev::recover(seclibsig, hm) == key.pub()); // sign with cryptopp (w/hash filter?), verify with cryptopp bytes sigppb(signer.MaxSignatureLength()); size_t ssz = signer.SignMessage(s_rng, m.data(), m.size(), sigppb.data()); Signature sigpp; memcpy(sigpp.data(), sigppb.data(), 64); BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), sigppb.data(), ssz)); // BOOST_REQUIRE(crypto::verify(key.pub(), sigpp, bytesConstRef(&m))); BOOST_REQUIRE(dev::verify(key.pub(), sigpp, hm)); // sign with cryptopp and stringsource hash filter string sigstr; StringSource ssrc(asString(m), true, new SignerFilter(s_rng, signer, new StringSink(sigstr))); FixedHash retsig((byte const*)sigstr.data(), Signature::ConstructFromPointer); BOOST_REQUIRE(verifier.VerifyMessage(m.data(), m.size(), retsig.data(), 64)); // BOOST_REQUIRE(crypto::verify(key.pub(), retsig, bytesConstRef(&m))); BOOST_REQUIRE(dev::verify(key.pub(), retsig, hm)); /// verification w/sec256lib // requires public key and sig in standard format byte encpub[65] = {0x04}; memcpy(&encpub[1], key.pub().data(), 64); byte dersig[72]; // verify sec256lib sig w/sec256lib size_t cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, seclibsig.data(), 64, DSA_P1363); BOOST_CHECK(cssz <= 72); BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(hm.data(), sizeof(hm), dersig, cssz, encpub, 65)); // verify cryptopp-raw sig w/sec256lib cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, sigppraw.data(), 64, DSA_P1363); BOOST_CHECK(cssz <= 72); BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(hm.data(), sizeof(hm), dersig, cssz, encpub, 65)); // verify cryptopp sig w/sec256lib cssz = DSAConvertSignatureFormat(dersig, 72, DSA_DER, sigppb.data(), 64, DSA_P1363); BOOST_CHECK(cssz <= 72); BOOST_REQUIRE(1 == secp256k1_ecdsa_verify(hm.data(), sizeof(hm), dersig, cssz, encpub, 65)); } } BOOST_AUTO_TEST_CASE(sha3_norestart) { CryptoPP::SHA3_256 ctx; bytes input(asBytes("test")); ctx.Update(input.data(), 4); CryptoPP::SHA3_256 ctxCopy(ctx); bytes interimDigest(32); ctx.Final(interimDigest.data()); ctx.Update(input.data(), 4); bytes firstDigest(32); ctx.Final(firstDigest.data()); BOOST_REQUIRE(interimDigest == firstDigest); ctxCopy.Update(input.data(), 4); bytes finalDigest(32); ctxCopy.Final(interimDigest.data()); BOOST_REQUIRE(interimDigest != finalDigest); // we can do this another way -- copy the context for final ctxCopy.Update(input.data(), 4); ctxCopy.Update(input.data(), 4); CryptoPP::SHA3_256 finalCtx(ctxCopy); bytes finalDigest2(32); finalCtx.Final(finalDigest2.data()); BOOST_REQUIRE(finalDigest2 == interimDigest); ctxCopy.Update(input.data(), 4); bytes finalDigest3(32); finalCtx.Final(finalDigest3.data()); BOOST_REQUIRE(finalDigest2 != finalDigest3); } BOOST_AUTO_TEST_CASE(ecies_kdf) { KeyPair local = KeyPair::create(); KeyPair remote = KeyPair::create(); // nonce Secret z1; ecdh::agree(local.sec(), remote.pub(), z1); auto key1 = s_secp256k1.eciesKDF(z1, bytes(), 64); bytesConstRef eKey1 = bytesConstRef(&key1).cropped(0, 32); bytesRef mKey1 = bytesRef(&key1).cropped(32, 32); sha3(mKey1, mKey1); Secret z2; ecdh::agree(remote.sec(), local.pub(), z2); auto key2 = s_secp256k1.eciesKDF(z2, bytes(), 64); bytesConstRef eKey2 = bytesConstRef(&key2).cropped(0, 32); bytesRef mKey2 = bytesRef(&key2).cropped(32, 32); sha3(mKey2, mKey2); BOOST_REQUIRE(eKey1.toBytes() == eKey2.toBytes()); BOOST_REQUIRE(mKey1.toBytes() == mKey2.toBytes()); BOOST_REQUIRE((u256)h256(z1) > 0); BOOST_REQUIRE(z1 == z2); BOOST_REQUIRE(key1.size() > 0 && ((u512)h512(key1)) > 0); BOOST_REQUIRE(key1 == key2); } BOOST_AUTO_TEST_CASE(ecies_standard) { KeyPair k = KeyPair::create(); string message("Now is the time for all good persons to come to the aid of humanity."); string original = message; bytes b = asBytes(message); s_secp256k1.encryptECIES(k.pub(), b); BOOST_REQUIRE(b != asBytes(original)); BOOST_REQUIRE(b.size() > 0 && b[0] == 0x04); s_secp256k1.decryptECIES(k.sec(), b); BOOST_REQUIRE(bytesConstRef(&b).cropped(0, original.size()).toBytes() == asBytes(original)); } BOOST_AUTO_TEST_CASE(ecies_eckeypair) { KeyPair k = KeyPair::create(); string message("Now is the time for all good persons to come to the aid of humanity."); string original = message; bytes b = asBytes(message); s_secp256k1.encrypt(k.pub(), b); BOOST_REQUIRE(b != asBytes(original)); s_secp256k1.decrypt(k.sec(), b); BOOST_REQUIRE(b == asBytes(original)); } BOOST_AUTO_TEST_CASE(ecdh) { cnote << "Testing ecdh..."; ECDH::Domain dhLocal(s_curveOID); SecByteBlock privLocal(dhLocal.PrivateKeyLength()); SecByteBlock pubLocal(dhLocal.PublicKeyLength()); dhLocal.GenerateKeyPair(s_rng, privLocal, pubLocal); ECDH::Domain dhRemote(s_curveOID); SecByteBlock privRemote(dhRemote.PrivateKeyLength()); SecByteBlock pubRemote(dhRemote.PublicKeyLength()); dhRemote.GenerateKeyPair(s_rng, privRemote, pubRemote); assert(dhLocal.AgreedValueLength() == dhRemote.AgreedValueLength()); // local: send public to remote; remote: send public to local // Local SecByteBlock sharedLocal(dhLocal.AgreedValueLength()); assert(dhLocal.Agree(sharedLocal, privLocal, pubRemote)); // Remote SecByteBlock sharedRemote(dhRemote.AgreedValueLength()); assert(dhRemote.Agree(sharedRemote, privRemote, pubLocal)); // Test Integer ssLocal, ssRemote; ssLocal.Decode(sharedLocal.BytePtr(), sharedLocal.SizeInBytes()); ssRemote.Decode(sharedRemote.BytePtr(), sharedRemote.SizeInBytes()); assert(ssLocal != 0); assert(ssLocal == ssRemote); // Now use our keys KeyPair a = KeyPair::create(); byte puba[65] = {0x04}; memcpy(&puba[1], a.pub().data(), 64); KeyPair b = KeyPair::create(); byte pubb[65] = {0x04}; memcpy(&pubb[1], b.pub().data(), 64); ECDH::Domain dhA(s_curveOID); Secret shared; BOOST_REQUIRE(dhA.Agree(shared.data(), a.sec().data(), pubb)); BOOST_REQUIRE(shared); } BOOST_AUTO_TEST_CASE(ecdhe) { cnote << "Testing ecdhe..."; ECDHE a, b; BOOST_CHECK_NE(a.pubkey(), b.pubkey()); ECDHE local; ECDHE remote; // local tx pubkey -> remote Secret sremote; remote.agree(local.pubkey(), sremote); // remote tx pbukey -> local Secret slocal; local.agree(remote.pubkey(), slocal); BOOST_REQUIRE(sremote); BOOST_REQUIRE(slocal); BOOST_REQUIRE_EQUAL(sremote, slocal); } BOOST_AUTO_TEST_CASE(handshakeNew) { // authInitiator -> E(remote-pubk, S(ecdhe-random, ecdh-shared-secret^nonce) || H(ecdhe-random-pubk) || pubk || nonce || 0x0) // authRecipient -> E(remote-pubk, ecdhe-random-pubk || nonce || 0x0) h256 base(sha3("privacy")); sha3(base.ref(), base.ref()); Secret nodeAsecret(base); KeyPair nodeA(nodeAsecret); BOOST_REQUIRE(nodeA.pub()); sha3(base.ref(), base.ref()); Secret nodeBsecret(base); KeyPair nodeB(nodeBsecret); BOOST_REQUIRE(nodeB.pub()); BOOST_REQUIRE_NE(nodeA.sec(), nodeB.sec()); // Initiator is Alice (nodeA) ECDHE eA; bytes nAbytes(fromHex("0xAAAA")); h256 nonceA(sha3(nAbytes)); bytes auth(Signature::size + h256::size + Public::size + h256::size + 1); Secret ssA; { bytesRef sig(&auth[0], Signature::size); bytesRef hepubk(&auth[Signature::size], h256::size); bytesRef pubk(&auth[Signature::size + h256::size], Public::size); bytesRef nonce(&auth[Signature::size + h256::size + Public::size], h256::size); crypto::ecdh::agree(nodeA.sec(), nodeB.pub(), ssA); sign(eA.seckey(), ssA ^ nonceA).ref().copyTo(sig); sha3(eA.pubkey().ref(), hepubk); nodeA.pub().ref().copyTo(pubk); nonceA.ref().copyTo(nonce); auth[auth.size() - 1] = 0x0; } bytes authcipher; encrypt(nodeB.pub(), &auth, authcipher); BOOST_REQUIRE_EQUAL(authcipher.size(), 279); // Receipient is Bob (nodeB) ECDHE eB; bytes nBbytes(fromHex("0xBBBB")); h256 nonceB(sha3(nAbytes)); bytes ack(Public::size + h256::size + 1); { // todo: replace nodeA.pub() in encrypt() // decrypt public key from auth bytes authdecrypted; decrypt(nodeB.sec(), &authcipher, authdecrypted); Public node; bytesConstRef pubk(&authdecrypted[Signature::size + h256::size], Public::size); pubk.copyTo(node.ref()); bytesRef epubk(&ack[0], Public::size); bytesRef nonce(&ack[Public::size], h256::size); eB.pubkey().ref().copyTo(epubk); nonceB.ref().copyTo(nonce); auth[auth.size() - 1] = 0x0; } bytes ackcipher; encrypt(nodeA.pub(), &ack, ackcipher); BOOST_REQUIRE_EQUAL(ackcipher.size(), 182); BOOST_REQUIRE(eA.pubkey()); BOOST_REQUIRE(eB.pubkey()); BOOST_REQUIRE_NE(eA.seckey(), eB.seckey()); /// Alice (after receiving ack) Secret aEncryptK; Secret aMacK; Secret aEgressMac; Secret aIngressMac; { bytes ackdecrypted; decrypt(nodeA.sec(), &ackcipher, ackdecrypted); BOOST_REQUIRE(ackdecrypted.size()); bytesConstRef ackRef(&ackdecrypted); Public eBAck; h256 nonceBAck; ackRef.cropped(0, Public::size).copyTo(bytesRef(eBAck.data(), Public::size)); ackRef.cropped(Public::size, h256::size).copyTo(nonceBAck.ref()); BOOST_REQUIRE_EQUAL(eBAck, eB.pubkey()); BOOST_REQUIRE_EQUAL(nonceBAck, nonceB); // TODO: export ess and require equal to b bytes keyMaterialBytes(512); bytesRef keyMaterial(&keyMaterialBytes); h256 ess; // todo: ecdh-agree should be able to output bytes eA.agree(eBAck, ess); ess.ref().copyTo(keyMaterial.cropped(0, h256::size)); ssA.ref().copyTo(keyMaterial.cropped(h256::size, h256::size)); // auto token = sha3(ssA); aEncryptK = sha3(keyMaterial); aEncryptK.ref().copyTo(keyMaterial.cropped(h256::size, h256::size)); aMacK = sha3(keyMaterial); keyMaterialBytes.resize(h256::size + authcipher.size()); keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size()); (aMacK ^ nonceBAck).ref().copyTo(keyMaterial); bytesConstRef(&authcipher).copyTo(keyMaterial.cropped(h256::size, authcipher.size())); aEgressMac = sha3(keyMaterial); keyMaterialBytes.resize(h256::size + ackcipher.size()); keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size()); (aMacK ^ nonceA).ref().copyTo(keyMaterial); bytesConstRef(&ackcipher).copyTo(keyMaterial.cropped(h256::size, ackcipher.size())); aIngressMac = sha3(keyMaterial); } /// Bob (after sending ack) Secret ssB; crypto::ecdh::agree(nodeB.sec(), nodeA.pub(), ssB); BOOST_REQUIRE_EQUAL(ssA, ssB); Secret bEncryptK; Secret bMacK; Secret bEgressMac; Secret bIngressMac; { bytes authdecrypted; decrypt(nodeB.sec(), &authcipher, authdecrypted); BOOST_REQUIRE(authdecrypted.size()); bytesConstRef ackRef(&authdecrypted); Signature sigAuth; h256 heA; Public eAAuth; Public nodeAAuth; h256 nonceAAuth; bytesConstRef sig(&authdecrypted[0], Signature::size); bytesConstRef hepubk(&authdecrypted[Signature::size], h256::size); bytesConstRef pubk(&authdecrypted[Signature::size + h256::size], Public::size); bytesConstRef nonce(&authdecrypted[Signature::size + h256::size + Public::size], h256::size); nonce.copyTo(nonceAAuth.ref()); pubk.copyTo(nodeAAuth.ref()); BOOST_REQUIRE(nonceAAuth); BOOST_REQUIRE_EQUAL(nonceA, nonceAAuth); BOOST_REQUIRE(nodeAAuth); BOOST_REQUIRE_EQUAL(nodeA.pub(), nodeAAuth); // bad test, bad!!! hepubk.copyTo(heA.ref()); sig.copyTo(sigAuth.ref()); Secret ss; s_secp256k1.agree(nodeB.sec(), nodeAAuth, ss); eAAuth = recover(sigAuth, ss ^ nonceAAuth); // todo: test when this fails; means remote is bad or packet bits were flipped BOOST_REQUIRE_EQUAL(heA, sha3(eAAuth)); BOOST_REQUIRE_EQUAL(eAAuth, eA.pubkey()); bytes keyMaterialBytes(512); bytesRef keyMaterial(&keyMaterialBytes); h256 ess; // todo: ecdh-agree should be able to output bytes eB.agree(eAAuth, ess); // s_secp256k1.agree(eB.seckey(), eAAuth, ess); ess.ref().copyTo(keyMaterial.cropped(0, h256::size)); ssB.ref().copyTo(keyMaterial.cropped(h256::size, h256::size)); // auto token = sha3(ssA); bEncryptK = sha3(keyMaterial); bEncryptK.ref().copyTo(keyMaterial.cropped(h256::size, h256::size)); bMacK = sha3(keyMaterial); // todo: replace nonceB with decrypted nonceB keyMaterialBytes.resize(h256::size + ackcipher.size()); keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size()); (bMacK ^ nonceAAuth).ref().copyTo(keyMaterial); bytesConstRef(&ackcipher).copyTo(keyMaterial.cropped(h256::size, ackcipher.size())); bEgressMac = sha3(keyMaterial); keyMaterialBytes.resize(h256::size + authcipher.size()); keyMaterial.retarget(keyMaterialBytes.data(), keyMaterialBytes.size()); (bMacK ^ nonceB).ref().copyTo(keyMaterial); bytesConstRef(&authcipher).copyTo(keyMaterial.cropped(h256::size, authcipher.size())); bIngressMac = sha3(keyMaterial); } BOOST_REQUIRE_EQUAL(aEncryptK, bEncryptK); BOOST_REQUIRE_EQUAL(aMacK, bMacK); BOOST_REQUIRE_EQUAL(aEgressMac, bIngressMac); BOOST_REQUIRE_EQUAL(bEgressMac, aIngressMac); } BOOST_AUTO_TEST_CASE(ecies_aes128_ctr_unaligned) { h128 encryptK(sha3("..."), h128::AlignLeft); h256 egressMac(sha3("+++")); // TESTING: send encrypt magic sequence bytes magic {0x22,0x40,0x08,0x91}; bytes magicCipherAndMac; magicCipherAndMac = encryptSymNoAuth(encryptK, h128(), &magic); magicCipherAndMac.resize(magicCipherAndMac.size() + 32); sha3mac(egressMac.ref(), &magic, egressMac.ref()); egressMac.ref().copyTo(bytesRef(&magicCipherAndMac).cropped(magicCipherAndMac.size() - 32, 32)); bytesConstRef cipher(&magicCipherAndMac[0], magicCipherAndMac.size() - 32); bytes plaintext = decryptSymNoAuth(encryptK, h128(), cipher); plaintext.resize(magic.size()); BOOST_REQUIRE(plaintext.size() > 0); BOOST_REQUIRE(magic == plaintext); } BOOST_AUTO_TEST_CASE(ecies_aes128_ctr) { h128 k(sha3("0xAAAA"), h128::AlignLeft); string m = "AAAAAAAAAAAAAAAA"; bytesConstRef msg((byte*)m.data(), m.size()); bytes ciphertext; h128 iv; tie(ciphertext, iv) = encryptSymNoAuth(k, msg); bytes plaintext = decryptSymNoAuth(k, iv, &ciphertext); BOOST_REQUIRE_EQUAL(asString(plaintext), m); } BOOST_AUTO_TEST_CASE(cryptopp_aes128_ctr) { const int aesKeyLen = 16; BOOST_REQUIRE(sizeof(char) == sizeof(byte)); // generate test key AutoSeededRandomPool rng; SecByteBlock key(0x00, aesKeyLen); rng.GenerateBlock(key, key.size()); // cryptopp uses IV as nonce/counter which is same as using nonce w/0 ctr FixedHash ctr; rng.GenerateBlock(ctr.data(), sizeof(ctr)); // used for decrypt FixedHash ctrcopy(ctr); string text = "Now is the time for all good persons to come to the aid of humanity."; unsigned char const* in = (unsigned char*)&text[0]; unsigned char* out = (unsigned char*)&text[0]; string original = text; string doublespeak = text + text; string cipherCopy; try { CTR_Mode::Encryption e; e.SetKeyWithIV(key, key.size(), ctr.data()); // 68 % 255 should be difference of counter e.ProcessData(out, in, text.size()); ctr = h128(u128(ctr) + text.size() / 16); BOOST_REQUIRE(text != original); cipherCopy = text; } catch (CryptoPP::Exception& _e) { cerr << _e.what() << endl; } try { CTR_Mode< AES >::Decryption d; d.SetKeyWithIV(key, key.size(), ctrcopy.data()); d.ProcessData(out, in, text.size()); BOOST_REQUIRE(text == original); } catch (CryptoPP::Exception& _e) { cerr << _e.what() << endl; } // reencrypt ciphertext... try { BOOST_REQUIRE(cipherCopy != text); in = (unsigned char*)&cipherCopy[0]; out = (unsigned char*)&cipherCopy[0]; CTR_Mode::Encryption e; e.SetKeyWithIV(key, key.size(), ctrcopy.data()); e.ProcessData(out, in, text.size()); // yep, ctr mode. BOOST_REQUIRE(cipherCopy == original); } catch (CryptoPP::Exception& _e) { cerr << _e.what() << endl; } } BOOST_AUTO_TEST_CASE(cryptopp_aes128_cbc) { const int aesKeyLen = 16; BOOST_REQUIRE(sizeof(char) == sizeof(byte)); AutoSeededRandomPool rng; SecByteBlock key(0x00, aesKeyLen); rng.GenerateBlock(key, key.size()); // Generate random IV byte iv[AES::BLOCKSIZE]; rng.GenerateBlock(iv, AES::BLOCKSIZE); string string128("AAAAAAAAAAAAAAAA"); string plainOriginal = string128; CryptoPP::CBC_Mode::Encryption cbcEncryption(key, key.size(), iv); cbcEncryption.ProcessData((byte*)&string128[0], (byte*)&string128[0], string128.size()); BOOST_REQUIRE(string128 != plainOriginal); CBC_Mode::Decryption cbcDecryption(key, key.size(), iv); cbcDecryption.ProcessData((byte*)&string128[0], (byte*)&string128[0], string128.size()); BOOST_REQUIRE(plainOriginal == string128); // plaintext whose size isn't divisible by block size must use stream filter for padding string string192("AAAAAAAAAAAAAAAABBBBBBBB"); plainOriginal = string192; string cipher; StreamTransformationFilter* aesStream = new StreamTransformationFilter(cbcEncryption, new StringSink(cipher)); StringSource source(string192, true, aesStream); BOOST_REQUIRE(cipher.size() == 32); cbcDecryption.ProcessData((byte*)&cipher[0], (byte*)&string192[0], cipher.size()); BOOST_REQUIRE(string192 == plainOriginal); } BOOST_AUTO_TEST_CASE(eth_keypairs) { cnote << "Testing Crypto..."; secp256k1_start(); KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4"))); BOOST_REQUIRE(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f"))); BOOST_REQUIRE(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075"))); { eth::Transaction t(1000, 0, 0, h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")), bytes(), 0, p.secret()); auto rlp = t.rlp(eth::WithoutSignature); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(eth::WithoutSignature); rlp = t.rlp(eth::WithSignature); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(eth::WithSignature); BOOST_REQUIRE(t.sender() == p.address()); } } int cryptoTest() { cnote << "Testing Crypto..."; secp256k1_start(); KeyPair p(Secret(fromHex("3ecb44df2159c26e0f995712d4f39b6f6e499b40749b1cf1246c37f9516cb6a4"))); BOOST_REQUIRE(p.pub() == Public(fromHex("97466f2b32bc3bb76d4741ae51cd1d8578b48d3f1e68da206d47321aec267ce78549b514e4453d74ef11b0cd5e4e4c364effddac8b51bcfc8de80682f952896f"))); BOOST_REQUIRE(p.address() == Address(fromHex("8a40bfaa73256b60764c1bf40675a99083efb075"))); { eth::Transaction t(1000, 0, 0, h160(fromHex("944400f4b88ac9589a0f17ed4671da26bddb668b")), bytes(), 0, p.secret()); auto rlp = t.rlp(eth::WithoutSignature); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(eth::WithoutSignature); rlp = t.rlp(eth::WithSignature); cnote << RLP(rlp); cnote << toHex(rlp); cnote << t.sha3(eth::WithSignature); assert(t.sender() == p.address()); } #if 0 // Test transaction. bytes tx = fromHex("88005401010101010101010101010101010101010101011f0de0b6b3a76400001ce8d4a5100080181c373130a009ba1f10285d4e659568bfcfec85067855c5a3c150100815dad4ef98fd37cf0593828c89db94bd6c64e210a32ef8956eaa81ea9307194996a3b879441f5d"); cout << "TX: " << RLP(tx) << endl; Transaction t2(tx); cout << "SENDER: " << hex << t2.sender() << dec << endl; secp256k1_start(); Transaction t; t.nonce = 0; t.value = 1; // 1 wei. t.type = eth::Transaction::MessageCall; t.receiveAddress = toAddress(sha3("123")); bytes sig64 = toBigEndian(t.vrs.r) + toBigEndian(t.vrs.s); cout << "SIG: " << sig64.size() << " " << toHex(sig64) << " " << t.vrs.v << endl; auto msg = t.rlp(false); cout << "TX w/o SIG: " << RLP(msg) << endl; cout << "RLP(TX w/o SIG): " << toHex(t.rlp(false)) << endl; std::string hmsg = sha3(t.rlp(false), false); cout << "SHA256(RLP(TX w/o SIG)): 0x" << toHex(hmsg) << endl; bytes privkey = sha3Bytes("123"); { bytes pubkey(65); int pubkeylen = 65; int ret = secp256k1_ecdsa_seckey_verify(privkey.data()); cout << "SEC: " << dec << ret << " " << toHex(privkey) << endl; ret = secp256k1_ecdsa_pubkey_create(pubkey.data(), &pubkeylen, privkey.data(), 1); pubkey.resize(pubkeylen); int good = secp256k1_ecdsa_pubkey_verify(pubkey.data(), (int)pubkey.size()); cout << "PUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << (good ? " GOOD" : " BAD") << endl; } // Test roundtrip... { bytes sig(64); u256 nonce = 0; int v = 0; cout << toHex(hmsg) << endl; cout << toHex(privkey) << endl; cout << hex << nonce << dec << endl; int ret = secp256k1_ecdsa_sign_compact((byte const*)hmsg.data(), (int)hmsg.size(), sig.data(), privkey.data(), (byte const*)&nonce, &v); cout << "MYSIG: " << dec << ret << " " << sig.size() << " " << toHex(sig) << " " << v << endl; bytes pubkey(65); int pubkeylen = 65; ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig.data(), pubkey.data(), &pubkeylen, 0, v); pubkey.resize(pubkeylen); cout << "MYREC: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl; } { bytes pubkey(65); int pubkeylen = 65; int ret = secp256k1_ecdsa_recover_compact((byte const*)hmsg.data(), (int)hmsg.size(), (byte const*)sig64.data(), pubkey.data(), &pubkeylen, 0, (int)t.vrs.v - 27); pubkey.resize(pubkeylen); cout << "RECPUB: " << dec << ret << " " << pubkeylen << " " << toHex(pubkey) << endl; cout << "SENDER: " << hex << toAddress(dev::sha3(bytesConstRef(&pubkey).cropped(1))) << dec << endl; } #endif return 0; } BOOST_AUTO_TEST_SUITE_END()