/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file Common.cpp
* @author Alex Leverington
* @author Gav Wood
* @date 2014
*/
#include "Common.h"
#include
#include
#include
#include
#include
#include
#include
#include "AES.h"
#include "CryptoPP.h"
using namespace std;
using namespace dev;
using namespace dev::crypto;
static Secp256k1 s_secp256k1;
bool dev::SignatureStruct::isValid() const
{
if (v > 1 ||
r >= h256("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141") ||
s >= h256("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141") ||
s < h256(1) ||
r < h256(1))
return false;
return true;
}
Address dev::ZeroAddress = Address();
Public dev::toPublic(Secret const& _secret)
{
Public p;
s_secp256k1.toPublic(_secret, p);
return std::move(p);
}
Address dev::toAddress(Public const& _public)
{
return s_secp256k1.toAddress(_public);
}
Address dev::toAddress(Secret const& _secret)
{
Public p;
s_secp256k1.toPublic(_secret, p);
return s_secp256k1.toAddress(p);
}
void dev::encrypt(Public const& _k, bytesConstRef _plain, bytes& o_cipher)
{
bytes io = _plain.toBytes();
s_secp256k1.encrypt(_k, io);
o_cipher = std::move(io);
}
bool dev::decrypt(Secret const& _k, bytesConstRef _cipher, bytes& o_plaintext)
{
bytes io = _cipher.toBytes();
s_secp256k1.decrypt(_k, io);
if (io.empty())
return false;
o_plaintext = std::move(io);
return true;
}
void dev::encryptECIES(Public const& _k, bytesConstRef _plain, bytes& o_cipher)
{
bytes io = _plain.toBytes();
s_secp256k1.encryptECIES(_k, io);
o_cipher = std::move(io);
}
bool dev::decryptECIES(Secret const& _k, bytesConstRef _cipher, bytes& o_plaintext)
{
bytes io = _cipher.toBytes();
if (!s_secp256k1.decryptECIES(_k, io))
return false;
o_plaintext = std::move(io);
return true;
}
void dev::encryptSym(Secret const& _k, bytesConstRef _plain, bytes& o_cipher)
{
// TOOD: @alex @subtly do this properly.
encrypt(KeyPair(_k).pub(), _plain, o_cipher);
}
bool dev::decryptSym(Secret const& _k, bytesConstRef _cipher, bytes& o_plain)
{
// TODO: @alex @subtly do this properly.
return decrypt(_k, _cipher, o_plain);
}
std::pair dev::encryptSymNoAuth(h128 const& _k, bytesConstRef _plain)
{
h128 iv(Nonce::get());
return make_pair(encryptSymNoAuth(_k, iv, _plain), iv);
}
bytes dev::encryptSymNoAuth(h128 const& _k, h128 const& _iv, bytesConstRef _plain)
{
const int c_aesKeyLen = 16;
SecByteBlock key(_k.data(), c_aesKeyLen);
try
{
CTR_Mode::Encryption e;
e.SetKeyWithIV(key, key.size(), _iv.data());
bytes ret(_plain.size());
e.ProcessData(ret.data(), _plain.data(), _plain.size());
return ret;
}
catch (CryptoPP::Exception& _e)
{
cerr << _e.what() << endl;
return bytes();
}
}
bytes dev::decryptSymNoAuth(h128 const& _k, h128 const& _iv, bytesConstRef _cipher)
{
const size_t c_aesKeyLen = 16;
SecByteBlock key(_k.data(), c_aesKeyLen);
try
{
CTR_Mode::Decryption d;
d.SetKeyWithIV(key, key.size(), _iv.data());
bytes ret(_cipher.size());
d.ProcessData(ret.data(), _cipher.data(), _cipher.size());
return ret;
}
catch (CryptoPP::Exception& _e)
{
cerr << _e.what() << endl;
return bytes();
}
}
Public dev::recover(Signature const& _sig, h256 const& _message)
{
return s_secp256k1.recover(_sig, _message.ref());
}
Signature dev::sign(Secret const& _k, h256 const& _hash)
{
return s_secp256k1.sign(_k, _hash);
}
bool dev::verify(Public const& _p, Signature const& _s, h256 const& _hash)
{
return s_secp256k1.verify(_p, _s, _hash.ref(), true);
}
bytes dev::pbkdf2(string const& _pass, bytes const& _salt, unsigned _iterations, unsigned _dkLen)
{
bytes ret(_dkLen);
PKCS5_PBKDF2_HMAC pbkdf;
pbkdf.DeriveKey(ret.data(), ret.size(), 0, (byte*)_pass.data(), _pass.size(), _salt.data(), _salt.size(), _iterations);
return ret;
}
KeyPair KeyPair::create()
{
static boost::thread_specific_ptr s_eng;
static unsigned s_id = 0;
if (!s_eng.get())
s_eng.reset(new mt19937_64(time(0) + chrono::high_resolution_clock::now().time_since_epoch().count() + ++s_id));
uniform_int_distribution d(0, 255);
for (int i = 0; i < 100; ++i)
{
KeyPair ret(FixedHash<32>::random(*s_eng.get()));
if (ret.address())
return ret;
}
return KeyPair();
}
KeyPair::KeyPair(h256 _sec):
m_secret(_sec)
{
if (s_secp256k1.verifySecret(m_secret, m_public))
m_address = s_secp256k1.toAddress(m_public);
}
KeyPair KeyPair::fromEncryptedSeed(bytesConstRef _seed, std::string const& _password)
{
return KeyPair(sha3(aesDecrypt(_seed, _password)));
}
h256 crypto::kdf(Secret const& _priv, h256 const& _hash)
{
// H(H(r||k)^h)
h256 s;
sha3mac(Nonce::get().ref(), _priv.ref(), s.ref());
s ^= _hash;
sha3(s.ref(), s.ref());
if (!s || !_hash || !_priv)
BOOST_THROW_EXCEPTION(InvalidState());
return std::move(s);
}
h256 Nonce::get(bool _commit)
{
// todo: atomic efface bit, periodic save, kdf, rr, rng
// todo: encrypt
static h256 s_seed;
static string s_seedFile(getDataDir() + "/seed");
static mutex s_x;
Guard l(s_x);
if (!s_seed)
{
static Nonce s_nonce;
bytes b = contents(s_seedFile);
if (b.size() == 32)
memcpy(s_seed.data(), b.data(), 32);
else
{
// todo: replace w/entropy from user and system
std::mt19937_64 s_eng(time(0) + chrono::high_resolution_clock::now().time_since_epoch().count());
std::uniform_int_distribution d(0, 255);
for (unsigned i = 0; i < 32; ++i)
s_seed[i] = (byte)d(s_eng);
}
if (!s_seed)
BOOST_THROW_EXCEPTION(InvalidState());
// prevent seed reuse if process terminates abnormally
writeFile(s_seedFile, bytes());
}
h256 prev(s_seed);
sha3(prev.ref(), s_seed.ref());
if (_commit)
writeFile(s_seedFile, s_seed.asBytes());
return std::move(s_seed);
}
Nonce::~Nonce()
{
Nonce::get(true);
}