/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Foobar is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Foobar. If not, see . */ /** @file State.cpp * @author Gav Wood * @date 2014 */ #include #include #include #include #include #include #include "Trie.h" #include "BlockChain.h" #include "Instruction.h" #include "Exceptions.h" #include "Dagger.h" #include "State.h" using namespace std; using namespace eth; u256 const State::c_stepFee = 0; u256 const State::c_dataFee = 0; u256 const State::c_memoryFee = 0; u256 const State::c_extroFee = 0; u256 const State::c_cryptoFee = 0; u256 const State::c_newContractFee = 0; u256 const State::c_txFee = 0; u256 const State::c_blockReward = 0; State::State(Address _coinbaseAddress): m_ourAddress(_coinbaseAddress) { secp256k1_start(); m_previousBlock = BlockInfo::genesis(); m_currentBlock.coinbaseAddress = m_ourAddress; ldb::Options o; ldb::DB::Open(o, "state", &m_db); m_state.open(m_db, m_currentBlock.stateRoot, &m_over); } void State::sync(BlockChain const& _bc) { sync(_bc, _bc.currentHash()); } void State::sync(BlockChain const& _bc, h256 _block) { // BLOCK BlockInfo bi; try { auto b = _bc.block(_block); bi.populate(b); bi.verifyInternals(_bc.block(_block)); } catch (...) { // TODO: Slightly nicer handling? :-) cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl; exit(1); } if (bi == m_currentBlock) { // We mined the last block. // Our state is good - we just need to move on to next. m_previousBlock = m_currentBlock; resetCurrent(); m_currentNumber++; } else if (bi == m_previousBlock) { // No change since last sync. // Carry on as we were. } else { // New blocks available, or we've switched to a different branch. All change. // Find most recent state dump and replay what's left. // (Most recent state dump might end up being genesis.) std::vector l = _bc.blockChain(h256Set()); if (l.back() == BlockInfo::genesis().hash) { // Reset to genesis block. m_previousBlock = BlockInfo::genesis(); } else { // TODO: Begin at a restore point. } // Iterate through in reverse, playing back each of the blocks. for (auto it = next(l.cbegin()); it != l.cend(); ++it) playback(_bc.block(*it)); m_currentNumber = _bc.details(_bc.currentHash()).number + 1; resetCurrent(); } } void State::resetCurrent() { m_transactions.clear(); m_currentBlock = BlockInfo(); m_currentBlock.coinbaseAddress = m_ourAddress; m_currentBlock.stateRoot = m_previousBlock.stateRoot; } void State::sync(TransactionQueue& _tq) { // TRANSACTIONS auto ts = _tq.transactions(); for (auto const& i: ts) if (!m_transactions.count(i.first)) // don't have it yet! Execute it now. try { Transaction t(i.second); execute(t, t.sender()); } catch (InvalidNonce in) { if (in.required > in.candidate) // too old _tq.drop(i.first); } catch (...) { // Something else went wrong - drop it. _tq.drop(i.first); } } u256 State::playback(bytesConstRef _block) { try { m_currentBlock.populate(_block); m_currentBlock.verifyInternals(_block); return playback(_block, BlockInfo()); } catch (...) { // TODO: Slightly nicer handling? :-) cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl; exit(1); } } u256 State::playback(bytesConstRef _block, BlockInfo const& _bi, BlockInfo const& _parent, BlockInfo const& _grandParent) { m_currentBlock = _bi; m_previousBlock = _parent; return playback(_block, _grandParent); } u256 State::playback(bytesConstRef _block, BlockInfo const& _grandParent) { if (m_currentBlock.parentHash != m_previousBlock.hash) throw InvalidParentHash(); // All ok with the block generally. Play back the transactions now... for (auto const& i: RLP(_block)[1]) execute(i.data()); // Initialise total difficulty calculation. u256 tdIncrease = m_currentBlock.difficulty; // Check uncles & apply their rewards to state. Addresses rewarded; for (auto const& i: RLP(_block)[2]) { BlockInfo uncle(i.data()); if (m_previousBlock.parentHash != uncle.parentHash) throw InvalidUncle(); if (_grandParent) uncle.verifyParent(_grandParent); tdIncrease += uncle.difficulty; rewarded.push_back(uncle.coinbaseAddress); } applyRewards(rewarded); // Hash the state trie and check against the state_root hash in m_currentBlock. if (m_currentBlock.stateRoot != rootHash()) throw InvalidStateRoot(); m_previousBlock = m_currentBlock; resetCurrent(); return tdIncrease; } // @returns the block that represents the difference between m_previousBlock and m_currentBlock. // (i.e. all the transactions we executed). void State::prepareToMine(BlockChain const& _bc) { RLPStream uncles; if (m_previousBlock != BlockInfo::genesis()) { // Find uncles if we're not a direct child of the genesis. auto us = _bc.details(m_previousBlock.parentHash).children; uncles.appendList(us.size()); for (auto const& u: us) BlockInfo(_bc.block(u)).fillStream(uncles, true); } else uncles.appendList(0); RLPStream txs(m_transactions.size()); for (auto const& i: m_transactions) i.second.fillStream(txs); txs.swapOut(m_currentTxs); uncles.swapOut(m_currentUncles); m_currentBlock.sha3Transactions = sha3(m_currentTxs); m_currentBlock.sha3Uncles = sha3(m_currentUncles); } bool State::mine(uint _msTimeout) { // Update timestamp according to clock. m_currentBlock.timestamp = time(0); // Update difficulty according to timestamp. m_currentBlock.difficulty = m_currentBlock.calculateDifficulty(m_previousBlock); // TODO: Miner class that keeps dagger between mine calls (or just non-polling mining). Dagger d(m_currentBlock.headerHashWithoutNonce()); m_currentBlock.nonce = d.search(_msTimeout, m_currentBlock.difficulty); if (m_currentBlock.nonce) { // Got it! Compile block: RLPStream ret; ret.appendList(3); m_currentBlock.fillStream(ret, true); ret.appendRaw(m_currentTxs); ret.appendRaw(m_currentUncles); ret.swapOut(m_currentBytes); return true; } return false; } bool State::isNormalAddress(Address _id) const { return RLP(m_state[_id]).itemCount() == 2; } bool State::isContractAddress(Address _id) const { return RLP(m_state[_id]).itemCount() == 3; } u256 State::balance(Address _id) const { RLP rlp(m_state[_id]); if (rlp.isList()) return rlp[0].toInt(); else return 0; } void State::noteSending(Address _id) { RLP rlp(m_state[_id]); if (rlp.isList()) if (rlp.itemCount() == 2) m_state.insert(_id, rlpList(rlp[0], rlp[1].toInt() + 1)); else m_state.insert(_id, rlpList(rlp[0], rlp[1].toInt() + 1, rlp[2])); else m_state.insert(_id, rlpList(0, 1)); } void State::addBalance(Address _id, u256 _amount) { RLP rlp(m_state[_id]); if (rlp.isList()) if (rlp.itemCount() == 2) m_state.insert(_id, rlpList(rlp[0].toInt() + _amount, rlp[1])); else m_state.insert(_id, rlpList(rlp[0].toInt() + _amount, rlp[1], rlp[2])); else m_state.insert(_id, rlpList(_amount, 0)); } void State::subBalance(Address _id, bigint _amount) { RLP rlp(m_state[_id]); if (rlp.isList()) { bigint bal = rlp[0].toInt(); if (bal < _amount) throw NotEnoughCash(); bal -= _amount; if (rlp.itemCount() == 2) m_state.insert(_id, rlpList(bal, rlp[1])); else m_state.insert(_id, rlpList(bal, rlp[1], rlp[2])); } else throw NotEnoughCash(); } u256 State::transactionsFrom(Address _id) const { RLP rlp(m_state[_id]); if (rlp.isList()) return rlp[0].toInt(RLP::LaisezFaire); else return 0; } u256 State::contractMemory(Address _id, u256 _memory) const { RLP rlp(m_state[_id]); if (rlp.itemCount() != 3) throw InvalidContractAddress(); return fromBigEndian(TrieDB(m_db, rlp[2].toHash(), (std::map*)&m_over)[_memory]); } void State::setContractMemory(Address _contract, u256 _memory, u256 _value) { RLP rlp(m_state[_contract]); TrieDB c(m_db, &m_over); std::string s = toBigEndianString(_value); if (rlp.itemCount() == 3) { c.setRoot(rlp[2].toHash()); c.insert(_memory, bytesConstRef(s)); m_state.insert(_contract, rlpList(rlp[0], rlp[1], c.root())); } else throw InvalidContractAddress(); } bool State::execute(bytesConstRef _rlp) { // Entry point for a user-executed transaction. try { Transaction t(_rlp); execute(t, t.sender()); // Add to the user-originated transactions that we've executed. // NOTE: Here, contract-originated transactions will not get added to the transaction list. // If this is wrong, move this line into execute(Transaction const& _t, Address _sender) and // don't forget to allow unsigned transactions in the tx list if they concur with the script execution. m_transactions.insert(make_pair(t.sha3(), t)); return true; } catch (...) { return false; } } void State::applyRewards(Addresses const& _uncleAddresses) { u256 r = c_blockReward; for (auto const& i: _uncleAddresses) { addBalance(i, c_blockReward * 4 / 3); r += c_blockReward / 8; } addBalance(m_currentBlock.coinbaseAddress, r); } void State::execute(Transaction const& _t, Address _sender) { // Entry point for a contract-originated transaction. // Ignore invalid transactions. auto nonceReq = transactionsFrom(_sender); if (_t.nonce != nonceReq) throw InvalidNonce(nonceReq, _t.nonce); // Not considered invalid - just pointless. if (balance(_sender) < _t.value + _t.fee) throw NotEnoughCash(); // Increment associated nonce for sender. noteSending(_sender); if (_t.receiveAddress) { subBalance(_sender, _t.value + _t.fee); addBalance(_t.receiveAddress, _t.value); addBalance(m_currentBlock.coinbaseAddress, _t.fee); if (isContractAddress(_t.receiveAddress)) { MinerFeeAdder feeAdder({this, 0}); // will add fee on destruction. execute(_t.receiveAddress, _sender, _t.value, _t.fee, _t.data, &feeAdder.fee); } } else { if (_t.fee < _t.data.size() * c_memoryFee + c_newContractFee) throw FeeTooSmall(); Address newAddress = low160(_t.sha3()); if (isContractAddress(newAddress)) throw ContractAddressCollision(); for (uint i = 0; i < _t.data.size(); ++i) setContractMemory(newAddress, i, _t.data[i]); subBalance(_sender, _t.value + _t.fee); addBalance(newAddress, _t.value); addBalance(m_currentBlock.coinbaseAddress, _t.fee); } } void State::execute(Address _myAddress, Address _txSender, u256 _txValue, u256 _txFee, u256s const& _txData, u256* _totalFee) { std::vector stack; // Set up some local functions. auto require = [&](u256 _n) { if (stack.size() < _n) throw StackTooSmall(_n, stack.size()); }; auto mem = [&](u256 _n) -> u256 { return contractMemory(_myAddress, _n); // auto i = myMemory.find(_n); // return i == myMemory.end() ? 0 : i->second; }; auto setMem = [&](u256 _n, u256 _v) { setContractMemory(_myAddress, _n, _v); /* if (_v) myMemory[_n] = _v; else myMemory.erase(_n);*/ }; u256 curPC = 0; u256 nextPC = 1; u256 stepCount = 0; for (bool stopped = false; !stopped; curPC = nextPC, nextPC = curPC + 1) { stepCount++; bigint minerFee = stepCount > 16 ? c_stepFee : 0; bigint voidFee = 0; auto rawInst = mem(curPC); if (rawInst > 0xff) throw BadInstruction(); Instruction inst = (Instruction)(uint8_t)rawInst; switch (inst) { case Instruction::STORE: require(2); if (!mem(stack.back()) && stack[stack.size() - 2]) voidFee += c_memoryFee; if (mem(stack.back()) && !stack[stack.size() - 2]) voidFee -= c_memoryFee; // continue on to... case Instruction::LOAD: minerFee += c_dataFee; break; case Instruction::EXTRO: case Instruction::BALANCE: minerFee += c_extroFee; break; case Instruction::MKTX: minerFee += c_txFee; break; case Instruction::SHA256: case Instruction::RIPEMD160: case Instruction::ECMUL: case Instruction::ECADD: case Instruction::ECSIGN: case Instruction::ECRECOVER: case Instruction::ECVALID: minerFee += c_cryptoFee; break; default: break; } if (minerFee + voidFee > balance(_myAddress)) throw NotEnoughCash(); subBalance(_myAddress, minerFee + voidFee); *_totalFee += (u256)minerFee; switch (inst) { case Instruction::ADD: //pops two items and pushes S[-1] + S[-2] mod 2^256. require(2); stack[stack.size() - 2] += stack.back(); stack.pop_back(); break; case Instruction::MUL: //pops two items and pushes S[-1] * S[-2] mod 2^256. require(2); stack[stack.size() - 2] *= stack.back(); stack.pop_back(); break; case Instruction::SUB: require(2); stack[stack.size() - 2] = stack.back() - stack[stack.size() - 2]; stack.pop_back(); break; case Instruction::DIV: require(2); stack[stack.size() - 2] = stack.back() / stack[stack.size() - 2]; stack.pop_back(); break; case Instruction::SDIV: require(2); (s256&)stack[stack.size() - 2] = (s256&)stack.back() / (s256&)stack[stack.size() - 2]; stack.pop_back(); break; case Instruction::MOD: require(2); stack[stack.size() - 2] = stack.back() % stack[stack.size() - 2]; stack.pop_back(); break; case Instruction::SMOD: require(2); (s256&)stack[stack.size() - 2] = (s256&)stack.back() % (s256&)stack[stack.size() - 2]; stack.pop_back(); break; case Instruction::EXP: { // TODO: better implementation? require(2); auto n = stack.back(); auto x = stack[stack.size() - 2]; stack.pop_back(); for (u256 i = 0; i < x; ++i) n *= n; stack.back() = n; break; } case Instruction::NEG: require(1); stack.back() = ~(stack.back() - 1); break; case Instruction::LT: require(2); stack[stack.size() - 2] = stack.back() < stack[stack.size() - 2] ? 1 : 0; stack.pop_back(); break; case Instruction::LE: require(2); stack[stack.size() - 2] = stack.back() <= stack[stack.size() - 2] ? 1 : 0; stack.pop_back(); break; case Instruction::GT: require(2); stack[stack.size() - 2] = stack.back() > stack[stack.size() - 2] ? 1 : 0; stack.pop_back(); break; case Instruction::GE: require(2); stack[stack.size() - 2] = stack.back() >= stack[stack.size() - 2] ? 1 : 0; stack.pop_back(); break; case Instruction::EQ: require(2); stack[stack.size() - 2] = stack.back() == stack[stack.size() - 2] ? 1 : 0; stack.pop_back(); break; case Instruction::NOT: require(1); stack.back() = stack.back() ? 0 : 1; stack.pop_back(); break; case Instruction::MYADDRESS: stack.push_back((u160)_myAddress); break; case Instruction::TXSENDER: stack.push_back((u160)_txSender); break; case Instruction::TXVALUE: stack.push_back(_txValue); break; case Instruction::TXFEE: stack.push_back(_txFee); break; case Instruction::TXDATAN: stack.push_back(_txData.size()); break; case Instruction::TXDATA: require(1); stack.back() = stack.back() < _txData.size() ? _txData[(uint)stack.back()] : 0; break; case Instruction::BLK_PREVHASH: stack.push_back(m_previousBlock.hash); break; case Instruction::BLK_COINBASE: stack.push_back((u160)m_currentBlock.coinbaseAddress); break; case Instruction::BLK_TIMESTAMP: stack.push_back(m_currentBlock.timestamp); break; case Instruction::BLK_NUMBER: stack.push_back(m_currentNumber); break; case Instruction::BLK_DIFFICULTY: stack.push_back(m_currentBlock.difficulty); break; case Instruction::SHA256: { uint s = (uint)min(stack.back(), (u256)(stack.size() - 1) * 32); stack.pop_back(); CryptoPP::SHA256 digest; uint i = 0; for (; s; s = (s >= 32 ? s - 32 : 0), i += 32) { bytes b = toBigEndian(stack.back()); digest.Update(b.data(), (int)min(32, s)); // b.size() == 32 stack.pop_back(); } array final; digest.TruncatedFinal(final.data(), 32); stack.push_back(fromBigEndian(final)); break; } case Instruction::RIPEMD160: { uint s = (uint)min(stack.back(), (u256)(stack.size() - 1) * 32); stack.pop_back(); CryptoPP::RIPEMD160 digest; uint i = 0; for (; s; s = (s >= 32 ? s - 32 : 0), i += 32) { bytes b = toBigEndian(stack.back()); digest.Update(b.data(), (int)min(32, s)); // b.size() == 32 stack.pop_back(); } array final; digest.TruncatedFinal(final.data(), 20); // NOTE: this aligns to right of 256-bit container (low-order bytes). // This won't work if they're treated as byte-arrays and thus left-aligned in a 256-bit container. stack.push_back((u256)fromBigEndian(final)); break; } case Instruction::ECMUL: { // ECMUL - pops three items. // If (S[-2],S[-1]) are a valid point in secp256k1, including both coordinates being less than P, pushes (S[-1],S[-2]) * S[-3], using (0,0) as the point at infinity. // Otherwise, pushes (0,0). require(3); bytes pub(1, 4); pub += toBigEndian(stack[stack.size() - 2]); pub += toBigEndian(stack.back()); stack.pop_back(); stack.pop_back(); bytes x = toBigEndian(stack.back()); stack.pop_back(); if (secp256k1_ecdsa_pubkey_verify(pub.data(), pub.size())) // TODO: Check both are less than P. { secp256k1_ecdsa_pubkey_tweak_mul(pub.data(), pub.size(), x.data()); stack.push_back(fromBigEndian(bytesConstRef(&pub).cropped(1, 32))); stack.push_back(fromBigEndian(bytesConstRef(&pub).cropped(33, 32))); } else { stack.push_back(0); stack.push_back(0); } break; } case Instruction::ECADD: { // ECADD - pops four items and pushes (S[-4],S[-3]) + (S[-2],S[-1]) if both points are valid, otherwise (0,0). require(4); bytes pub(1, 4); pub += toBigEndian(stack[stack.size() - 2]); pub += toBigEndian(stack.back()); stack.pop_back(); stack.pop_back(); bytes tweak(1, 4); tweak += toBigEndian(stack[stack.size() - 2]); tweak += toBigEndian(stack.back()); stack.pop_back(); stack.pop_back(); if (secp256k1_ecdsa_pubkey_verify(pub.data(), pub.size()) && secp256k1_ecdsa_pubkey_verify(tweak.data(), tweak.size())) { secp256k1_ecdsa_pubkey_tweak_add(pub.data(), pub.size(), tweak.data()); stack.push_back(fromBigEndian(bytesConstRef(&pub).cropped(1, 32))); stack.push_back(fromBigEndian(bytesConstRef(&pub).cropped(33, 32))); } else { stack.push_back(0); stack.push_back(0); } break; } case Instruction::ECSIGN: { require(2); bytes sig(64); int v = 0; u256 msg = stack.back(); stack.pop_back(); u256 priv = stack.back(); stack.pop_back(); bytes nonce = toBigEndian(Transaction::kFromMessage(msg, priv)); if (!secp256k1_ecdsa_sign_compact(toBigEndian(msg).data(), 64, sig.data(), toBigEndian(priv).data(), nonce.data(), &v)) throw InvalidSignature(); stack.push_back(v + 27); stack.push_back(fromBigEndian(bytesConstRef(&sig).cropped(0, 32))); stack.push_back(fromBigEndian(bytesConstRef(&sig).cropped(32))); break; } case Instruction::ECRECOVER: { require(4); bytes sig = toBigEndian(stack[stack.size() - 2]) + toBigEndian(stack.back()); stack.pop_back(); stack.pop_back(); int v = (int)stack.back(); stack.pop_back(); bytes msg = toBigEndian(stack.back()); stack.pop_back(); byte pubkey[65]; int pubkeylen = 65; if (secp256k1_ecdsa_recover_compact(msg.data(), msg.size(), sig.data(), pubkey, &pubkeylen, 0, v - 27)) { stack.push_back(0); stack.push_back(0); } else { stack.push_back(fromBigEndian(bytesConstRef(&pubkey[1], 32))); stack.push_back(fromBigEndian(bytesConstRef(&pubkey[33], 32))); } break; } case Instruction::ECVALID: { require(2); bytes pub(1, 4); pub += toBigEndian(stack[stack.size() - 2]); pub += toBigEndian(stack.back()); stack.pop_back(); stack.pop_back(); stack.back() = secp256k1_ecdsa_pubkey_verify(pub.data(), pub.size()) ? 1 : 0; break; } case Instruction::SHA3: { uint s = (uint)min(stack.back(), (u256)(stack.size() - 1) * 32); stack.pop_back(); CryptoPP::SHA3_256 digest; uint i = 0; for (; s; s = (s >= 32 ? s - 32 : 0), i += 32) { bytes b = toBigEndian(stack.back()); digest.Update(b.data(), (int)min(32, s)); // b.size() == 32 stack.pop_back(); } array final; digest.TruncatedFinal(final.data(), 32); stack.push_back(fromBigEndian(final)); break; } case Instruction::PUSH: { stack.push_back(mem(curPC + 1)); nextPC = curPC + 2; break; } case Instruction::POP: require(1); stack.pop_back(); break; case Instruction::DUP: require(1); stack.push_back(stack.back()); break; case Instruction::DUPN: { auto s = mem(curPC + 1); if (s == 0 || s > stack.size()) throw OperandOutOfRange(1, stack.size(), s); stack.push_back(stack[stack.size() - (uint)s]); nextPC = curPC + 2; break; } case Instruction::SWAP: { require(2); auto d = stack.back(); stack.back() = stack[stack.size() - 2]; stack[stack.size() - 2] = d; break; } case Instruction::SWAPN: { require(1); auto d = stack.back(); auto s = mem(curPC + 1); if (s == 0 || s > stack.size()) throw OperandOutOfRange(1, stack.size(), s); stack.back() = stack[stack.size() - (uint)s]; stack[stack.size() - (uint)s] = d; nextPC = curPC + 2; break; } case Instruction::LOAD: require(1); stack.back() = mem(stack.back()); break; case Instruction::STORE: require(2); setMem(stack.back(), stack[stack.size() - 2]); stack.pop_back(); stack.pop_back(); break; case Instruction::JMP: require(1); nextPC = stack.back(); stack.pop_back(); break; case Instruction::JMPI: require(2); if (stack.back()) nextPC = stack[stack.size() - 2]; stack.pop_back(); stack.pop_back(); break; case Instruction::IND: stack.push_back(curPC); break; case Instruction::EXTRO: { require(2); auto memoryAddress = stack.back(); stack.pop_back(); Address contractAddress = left160(stack.back()); stack.back() = contractMemory(contractAddress, memoryAddress); break; } case Instruction::BALANCE: { require(1); stack.back() = balance(low160(stack.back())); break; } case Instruction::MKTX: { require(4); Transaction t; t.receiveAddress = left160(stack.back()); stack.pop_back(); t.value = stack.back(); stack.pop_back(); t.fee = stack.back(); stack.pop_back(); auto itemCount = stack.back(); stack.pop_back(); if (stack.size() < itemCount) throw OperandOutOfRange(0, stack.size(), itemCount); t.data.reserve((uint)itemCount); for (auto i = 0; i < itemCount; ++i) { t.data.push_back(stack.back()); stack.pop_back(); } t.nonce = transactionsFrom(_myAddress); execute(t, _myAddress); break; } case Instruction::SUICIDE: { require(1); Address dest = left160(stack.back()); // TODO: easy once we have the local cache of memory in place. u256 minusVoidFee = 0;//m_current[_myAddress].memory().size() * c_memoryFee; addBalance(dest, balance(_myAddress) + minusVoidFee); m_state.remove(_myAddress); // ...follow through to... } case Instruction::STOP: return; default: throw BadInstruction(); } } }