/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see .
*/
/** @file PeerNetwork.cpp
* @authors:
* Gav Wood
* Eric Lombrozo
* @date 2014
*/
#include "PeerServer.h"
#include
#ifdef _WIN32
// winsock is already included
// #include
#else
#include
#endif
#include
#include
#include
#include
#include
#include "Exceptions.h"
#include "BlockChain.h"
#include "BlockInfo.h"
#include "TransactionQueue.h"
#include "PeerSession.h"
using namespace std;
using namespace eth;
// Addresses we will skip during network interface discovery
// Use a vector as the list is small
// Why this and not names?
// Under MacOSX loopback (127.0.0.1) can be named lo0 and br0 are bridges (0.0.0.0)
static const set c_rejectAddresses = {
{bi::address_v4::from_string("127.0.0.1")},
{bi::address_v6::from_string("::1")},
{bi::address_v4::from_string("0.0.0.0")},
{bi::address_v6::from_string("::")}
};
PeerServer::PeerServer(std::string const& _clientVersion, BlockChain const& _ch, unsigned int _networkId, unsigned short _port, NodeMode _m, string const& _publicAddress, bool _upnp):
m_clientVersion(_clientVersion),
m_mode(_m),
m_listenPort(_port),
m_chain(&_ch),
m_acceptor(m_ioService, bi::tcp::endpoint(bi::tcp::v4(), _port)),
m_socket(m_ioService),
m_key(KeyPair::create()),
m_networkId(_networkId)
{
populateAddresses();
determinePublic(_publicAddress, _upnp);
ensureAccepting();
clog(NetNote) << "Id:" << toHex(m_key.address().ref().cropped(0, 4)) << "Mode: " << (_m == NodeMode::PeerServer ? "PeerServer" : "Full");
}
PeerServer::PeerServer(std::string const& _clientVersion, BlockChain const& _ch, unsigned int _networkId, NodeMode _m, string const& _publicAddress, bool _upnp):
m_clientVersion(_clientVersion),
m_mode(_m),
m_listenPort(0),
m_chain(&_ch),
m_acceptor(m_ioService, bi::tcp::endpoint(bi::tcp::v4(), 0)),
m_socket(m_ioService),
m_key(KeyPair::create()),
m_networkId(_networkId)
{
m_listenPort = m_acceptor.local_endpoint().port();
// populate addresses.
populateAddresses();
determinePublic(_publicAddress, _upnp);
ensureAccepting();
clog(NetNote) << "Id:" << toHex(m_key.address().ref().cropped(0, 4)) << "Mode: " << (m_mode == NodeMode::PeerServer ? "PeerServer" : "Full");
}
PeerServer::PeerServer(std::string const& _clientVersion, BlockChain const& _ch, unsigned int _networkId, NodeMode _m):
m_clientVersion(_clientVersion),
m_mode(_m),
m_listenPort(0),
m_chain(&_ch),
m_acceptor(m_ioService, bi::tcp::endpoint(bi::tcp::v4(), 0)),
m_socket(m_ioService),
m_key(KeyPair::create()),
m_networkId(_networkId)
{
// populate addresses.
populateAddresses();
clog(NetNote) << "Id:" << toHex(m_key.address().ref().cropped(0, 4)) << "Mode: " << (m_mode == NodeMode::PeerServer ? "PeerServer" : "Full");
}
PeerServer::~PeerServer()
{
for (auto const& i: m_peers)
if (auto p = i.second.lock())
p->disconnect(ClientQuit);
delete m_upnp;
}
unsigned PeerServer::protocolVersion()
{
return 13;
}
void PeerServer::determinePublic(string const& _publicAddress, bool _upnp)
{
if (_upnp)
try
{
m_upnp = new UPnP;
}
catch (NoUPnPDevice) {} // let m_upnp continue as null - we handle it properly.
bi::tcp::resolver r(m_ioService);
if (m_upnp && m_upnp->isValid() && m_peerAddresses.size())
{
clog(NetNote) << "External addr: " << m_upnp->externalIP();
int p = m_upnp->addRedirect(m_peerAddresses[0].to_string().c_str(), m_listenPort);
if (p)
clog(NetNote) << "Punched through NAT and mapped local port" << m_listenPort << "onto external port" << p << ".";
else
{
// couldn't map
clog(NetWarn) << "Couldn't punch through NAT (or no NAT in place). Assuming " << m_listenPort << " is local & external port.";
p = m_listenPort;
}
auto eip = m_upnp->externalIP();
if (eip == string("0.0.0.0") && _publicAddress.empty())
m_public = bi::tcp::endpoint(bi::address(), (unsigned short)p);
else
{
m_public = bi::tcp::endpoint(bi::address::from_string(_publicAddress.empty() ? eip : _publicAddress), (unsigned short)p);
m_addresses.push_back(m_public.address().to_v4());
}
}
else
{
// No UPnP - fallback on given public address or, if empty, the assumed peer address.
m_public = bi::tcp::endpoint(_publicAddress.size() ? bi::address::from_string(_publicAddress)
: m_peerAddresses.size() ? m_peerAddresses[0]
: bi::address(), m_listenPort);
m_addresses.push_back(m_public.address().to_v4());
}
}
void PeerServer::populateAddresses()
{
#ifdef _WIN32
WSAData wsaData;
if (WSAStartup(MAKEWORD(1, 1), &wsaData) != 0)
throw NoNetworking();
char ac[80];
if (gethostname(ac, sizeof(ac)) == SOCKET_ERROR)
{
clog(NetWarn) << "Error " << WSAGetLastError() << " when getting local host name.";
WSACleanup();
throw NoNetworking();
}
struct hostent* phe = gethostbyname(ac);
if (phe == 0)
{
clog(NetWarn) << "Bad host lookup.";
WSACleanup();
throw NoNetworking();
}
for (int i = 0; phe->h_addr_list[i] != 0; ++i)
{
struct in_addr addr;
memcpy(&addr, phe->h_addr_list[i], sizeof(struct in_addr));
char *addrStr = inet_ntoa(addr);
bi::address ad(bi::address::from_string(addrStr));
m_addresses.push_back(ad.to_v4());
bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end();
if (!isLocal)
m_peerAddresses.push_back(ad.to_v4());
clog(NetNote) << "Address: " << ac << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]");
}
WSACleanup();
#else
ifaddrs* ifaddr;
if (getifaddrs(&ifaddr) == -1)
throw NoNetworking();
bi::tcp::resolver r(m_ioService);
for (ifaddrs* ifa = ifaddr; ifa; ifa = ifa->ifa_next)
{
if (!ifa->ifa_addr)
continue;
if (ifa->ifa_addr->sa_family == AF_INET)
{
char host[NI_MAXHOST];
if (getnameinfo(ifa->ifa_addr, sizeof(struct sockaddr_in), host, NI_MAXHOST, NULL, 0, NI_NUMERICHOST))
continue;
// TODO: Make exception safe when no internet.
auto it = r.resolve({host, "30303"});
bi::tcp::endpoint ep = it->endpoint();
bi::address ad = ep.address();
m_addresses.push_back(ad.to_v4());
bool isLocal = std::find(c_rejectAddresses.begin(), c_rejectAddresses.end(), ad) != c_rejectAddresses.end();
if (!isLocal)
m_peerAddresses.push_back(ad.to_v4());
clog(NetNote) << "Address: " << host << " = " << m_addresses.back() << (isLocal ? " [LOCAL]" : " [PEER]");
}
}
freeifaddrs(ifaddr);
#endif
}
std::map PeerServer::potentialPeers()
{
std::map ret;
if (!m_public.address().is_unspecified())
ret.insert(make_pair(m_key.pub(), m_public));
for (auto i: m_peers)
if (auto j = i.second.lock())
{
auto ep = j->endpoint();
// Skip peers with a listen port of zero or are on a private network
bool peerOnNet = (j->m_listenPort != 0 && !isPrivateAddress(ep.address()));
if (peerOnNet && ep.port() && j->m_id)
ret.insert(make_pair(i.first, ep));
}
return ret;
}
void PeerServer::ensureAccepting()
{
if (m_accepting == false)
{
clog(NetNote) << "Listening on local port " << m_listenPort << " (public: " << m_public << ")";
m_accepting = true;
m_acceptor.async_accept(m_socket, [=](boost::system::error_code ec)
{
if (!ec)
try
{
try {
clog(NetNote) << "Accepted connection from " << m_socket.remote_endpoint();
} catch (...){}
bi::address remoteAddress = m_socket.remote_endpoint().address();
// Port defaults to 0 - we let the hello tell us which port the peer listens to
auto p = std::make_shared(this, std::move(m_socket), m_networkId, remoteAddress);
p->start();
}
catch (std::exception const& _e)
{
clog(NetWarn) << "ERROR: " << _e.what();
}
m_accepting = false;
if (ec.value() != 1 && (m_mode == NodeMode::PeerServer || m_peers.size() < m_idealPeerCount * 2))
ensureAccepting();
});
}
}
void PeerServer::connect(std::string const& _addr, unsigned short _port) noexcept
{
try
{
connect(bi::tcp::endpoint(bi::address::from_string(_addr), _port));
}
catch (exception const& e)
{
// Couldn't connect
clog(NetNote) << "Bad host " << _addr << " (" << e.what() << ")";
}
}
void PeerServer::connect(bi::tcp::endpoint const& _ep)
{
clog(NetNote) << "Attempting connection to " << _ep;
bi::tcp::socket* s = new bi::tcp::socket(m_ioService);
s->async_connect(_ep, [=](boost::system::error_code const& ec)
{
if (ec)
{
clog(NetNote) << "Connection refused to " << _ep << " (" << ec.message() << ")";
for (auto i = m_incomingPeers.begin(); i != m_incomingPeers.end(); ++i)
if (i->second.first == _ep && i->second.second < 3)
{
m_freePeers.push_back(i->first);
goto OK;
}
// for-else
clog(NetNote) << "Giving up.";
OK:;
}
else
{
auto p = make_shared(this, std::move(*s), m_networkId, _ep.address(), _ep.port());
clog(NetNote) << "Connected to " << _ep;
p->start();
}
delete s;
});
}
bool PeerServer::sync()
{
bool ret = false;
if (isInitialised())
for (auto i = m_peers.begin(); i != m_peers.end();)
{
auto p = i->second.lock();
if (p && p->m_socket.is_open() &&
(p->m_disconnect == chrono::steady_clock::time_point::max() || chrono::steady_clock::now() - p->m_disconnect < chrono::seconds(1))) // kill old peers that should be disconnected.
++i;
else
{
i = m_peers.erase(i);
ret = true;
}
}
return ret;
}
bool PeerServer::ensureInitialised(BlockChain& _bc, TransactionQueue& _tq)
{
if (m_latestBlockSent == h256())
{
// First time - just initialise.
m_latestBlockSent = _bc.currentHash();
clog(NetNote) << "Initialising: latest=" << m_latestBlockSent;
for (auto const& i: _tq.transactions())
m_transactionsSent.insert(i.first);
m_lastPeersRequest = chrono::steady_clock::time_point::min();
return true;
}
return false;
}
bool PeerServer::sync(BlockChain& _bc, TransactionQueue& _tq, Overlay& _o)
{
bool ret = ensureInitialised(_bc, _tq);
if (sync())
ret = true;
if (m_mode == NodeMode::Full)
{
for (auto it = m_incomingTransactions.begin(); it != m_incomingTransactions.end(); ++it)
if (_tq.import(*it))
{}//ret = true; // just putting a transaction in the queue isn't enough to change the state - it might have an invalid nonce...
else
m_transactionsSent.insert(sha3(*it)); // if we already had the transaction, then don't bother sending it on.
m_incomingTransactions.clear();
auto h = _bc.currentHash();
bool resendAll = (h != m_latestBlockSent);
// Send any new transactions.
for (auto j: m_peers)
if (auto p = j.second.lock())
{
bytes b;
uint n = 0;
for (auto const& i: _tq.transactions())
if ((!m_transactionsSent.count(i.first) && !p->m_knownTransactions.count(i.first)) || p->m_requireTransactions || resendAll)
{
b += i.second;
++n;
m_transactionsSent.insert(i.first);
}
if (n)
{
RLPStream ts;
PeerSession::prep(ts);
ts.appendList(n + 1) << TransactionsPacket;
ts.appendRaw(b, n).swapOut(b);
seal(b);
p->send(&b);
}
p->m_knownTransactions.clear();
p->m_requireTransactions = false;
}
// Send any new blocks.
if (h != m_latestBlockSent)
{
// TODO: find where they diverge and send complete new branch.
RLPStream ts;
PeerSession::prep(ts);
ts.appendList(2) << BlocksPacket;
bytes b;
ts.appendRaw(_bc.block(_bc.currentHash())).swapOut(b);
seal(b);
for (auto j: m_peers)
if (auto p = j.second.lock())
{
if (!p->m_knownBlocks.count(_bc.currentHash()))
p->send(&b);
p->m_knownBlocks.clear();
}
}
m_latestBlockSent = h;
for (int accepted = 1, n = 0; accepted; ++n)
{
accepted = 0;
if (m_incomingBlocks.size())
for (auto it = prev(m_incomingBlocks.end());; --it)
{
try
{
_bc.import(*it, _o);
it = m_incomingBlocks.erase(it);
++accepted;
ret = true;
}
catch (UnknownParent)
{
// Don't (yet) know its parent. Leave it for later.
m_unknownParentBlocks.push_back(*it);
it = m_incomingBlocks.erase(it);
}
catch (...)
{
// Some other error - erase it.
it = m_incomingBlocks.erase(it);
}
if (it == m_incomingBlocks.begin())
break;
}
if (!n && accepted)
{
for (auto i: m_unknownParentBlocks)
m_incomingBlocks.push_back(i);
m_unknownParentBlocks.clear();
}
}
// Connect to additional peers
while (m_peers.size() < m_idealPeerCount)
{
if (m_freePeers.empty())
{
if (chrono::steady_clock::now() > m_lastPeersRequest + chrono::seconds(10))
{
RLPStream s;
bytes b;
(PeerSession::prep(s).appendList(1) << GetPeersPacket).swapOut(b);
seal(b);
for (auto const& i: m_peers)
if (auto p = i.second.lock())
if (p->isOpen())
p->send(&b);
m_lastPeersRequest = chrono::steady_clock::now();
}
if (!m_accepting)
ensureAccepting();
break;
}
auto x = time(0) % m_freePeers.size();
m_incomingPeers[m_freePeers[x]].second++;
connect(m_incomingPeers[m_freePeers[x]].first);
m_freePeers.erase(m_freePeers.begin() + x);
}
}
// platform for consensus of social contract.
// restricts your freedom but does so fairly. and that's the value proposition.
// guarantees that everyone else respect the rules of the system. (i.e. obeys laws).
// We'll keep at most twice as many as is ideal, halfing what counts as "too young to kill" until we get there.
for (uint old = 15000; m_peers.size() > m_idealPeerCount * 2 && old > 100; old /= 2)
while (m_peers.size() > m_idealPeerCount)
{
// look for worst peer to kick off
// first work out how many are old enough to kick off.
shared_ptr worst;
unsigned agedPeers = 0;
for (auto i: m_peers)
if (auto p = i.second.lock())
if ((m_mode != NodeMode::PeerServer || p->m_caps != 0x01) && chrono::steady_clock::now() > p->m_connect + chrono::milliseconds(old)) // don't throw off new peers; peer-servers should never kick off other peer-servers.
{
++agedPeers;
if ((!worst || p->m_rating < worst->m_rating || (p->m_rating == worst->m_rating && p->m_connect > worst->m_connect))) // kill older ones
worst = p;
}
if (!worst || agedPeers <= m_idealPeerCount)
break;
worst->disconnect(TooManyPeers);
}
return ret;
}
std::vector PeerServer::peers() const
{
const_cast(this)->pingAll();
this_thread::sleep_for(chrono::milliseconds(200));
std::vector ret;
for (auto& i: m_peers)
if (auto j = i.second.lock())
if (j->m_socket.is_open())
ret.push_back(j->m_info);
return ret;
}
void PeerServer::pingAll()
{
for (auto& i: m_peers)
if (auto j = i.second.lock())
j->ping();
}
bytes PeerServer::savePeers() const
{
RLPStream ret;
int n = 0;
for (auto& i: m_peers)
if (auto p = i.second.lock())
if (p->m_socket.is_open() && p->endpoint().port())
{
ret.appendList(3) << p->endpoint().address().to_v4().to_bytes() << p->endpoint().port() << p->m_id;
n++;
}
return RLPStream(n).appendRaw(ret.out(), n).out();
}
void PeerServer::restorePeers(bytesConstRef _b)
{
for (auto i: RLP(_b))
{
auto k = (Public)i[2];
if (!m_incomingPeers.count(k))
{
m_incomingPeers.insert(make_pair(k, make_pair(bi::tcp::endpoint(bi::address_v4(i[0].toArray()), i[1].toInt()), 0)));
m_freePeers.push_back(k);
}
}
}