#include "Compiler.h" #include #include #include #include #include #include #include "Type.h" #include "Memory.h" #include "Ext.h" #include "GasMeter.h" #include "Utils.h" #include "Endianness.h" namespace dev { namespace eth { namespace jit { Compiler::Compiler(): m_builder(llvm::getGlobalContext()) { Type::init(m_builder.getContext()); } void Compiler::createBasicBlocks(bytesConstRef bytecode) { std::set splitPoints; // Sorted collections of instruction indices where basic blocks start/end splitPoints.insert(0); // First basic block std::map directJumpTargets; std::vector indirectJumpTargets; boost::dynamic_bitset<> validJumpTargets(bytecode.size()); for (auto curr = bytecode.begin(); curr != bytecode.end(); ++curr) { ProgramCounter currentPC = curr - bytecode.begin(); validJumpTargets[currentPC] = 1; auto inst = static_cast(*curr); switch (inst) { case Instruction::ANY_PUSH: { auto numBytes = static_cast(inst) - static_cast(Instruction::PUSH1) + 1; auto next = curr + numBytes + 1; if (next >= bytecode.end()) break; auto nextInst = static_cast(*next); if (nextInst == Instruction::JUMP || nextInst == Instruction::JUMPI) { // Compute target PC of the jump. u256 val = 0; for (auto iter = curr + 1; iter < next; ++iter) { val <<= 8; val |= *iter; } // Create a block for the JUMP target. ProgramCounter targetPC = val < bytecode.size() ? val.convert_to() : bytecode.size(); splitPoints.insert(targetPC); ProgramCounter jumpPC = (next - bytecode.begin()); directJumpTargets[jumpPC] = targetPC; } curr += numBytes; break; } case Instruction::JUMPDEST: { // A basic block starts here. splitPoints.insert(currentPC); indirectJumpTargets.push_back(currentPC); break; } case Instruction::JUMP: case Instruction::JUMPI: case Instruction::RETURN: case Instruction::STOP: case Instruction::SUICIDE: { // Create a basic block starting at the following instruction. if (curr + 1 < bytecode.end()) { splitPoints.insert(currentPC + 1); } break; } default: break; } } // Remove split points generated from jumps out of code or into data. for (auto it = splitPoints.cbegin(); it != splitPoints.cend(); ) { if (*it > bytecode.size() || !validJumpTargets[*it]) it = splitPoints.erase(it); else ++it; } for (auto it = splitPoints.cbegin(); it != splitPoints.cend(); ) { auto beginInstIdx = *it; ++it; auto endInstIdx = it != splitPoints.cend() ? *it : bytecode.size(); basicBlocks.emplace(std::piecewise_construct, std::forward_as_tuple(beginInstIdx), std::forward_as_tuple(beginInstIdx, endInstIdx, m_mainFunc)); } m_stopBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "Stop", m_mainFunc); m_badJumpBlock = std::make_unique("BadJumpBlock", m_mainFunc); m_jumpTableBlock = std::make_unique("JumpTableBlock", m_mainFunc); for (auto it = directJumpTargets.cbegin(); it != directJumpTargets.cend(); ++it) { if (it->second >= bytecode.size()) { // Jumping out of code means STOP m_directJumpTargets[it->first] = m_stopBB; continue; } auto blockIter = basicBlocks.find(it->second); if (blockIter != basicBlocks.end()) { m_directJumpTargets[it->first] = blockIter->second.llvm(); } else { std::cerr << "Bad JUMP at PC " << it->first << ": " << it->second << " is not a valid PC\n"; m_directJumpTargets[it->first] = m_badJumpBlock->llvm(); } } for (auto it = indirectJumpTargets.cbegin(); it != indirectJumpTargets.cend(); ++it) { m_indirectJumpTargets.push_back(&basicBlocks.find(*it)->second); } } std::unique_ptr Compiler::compile(bytesConstRef bytecode) { auto module = std::make_unique("main", m_builder.getContext()); // Create main function m_mainFunc = llvm::Function::Create(llvm::FunctionType::get(Type::MainReturn, false), llvm::Function::ExternalLinkage, "main", module.get()); // Create the basic blocks. auto entryBlock = llvm::BasicBlock::Create(m_builder.getContext(), "entry", m_mainFunc); m_builder.SetInsertPoint(entryBlock); createBasicBlocks(bytecode); // Init runtime structures. GasMeter gasMeter(m_builder); Memory memory(m_builder, gasMeter); Ext ext(m_builder); m_builder.CreateBr(basicBlocks.begin()->second); for (auto basicBlockPairIt = basicBlocks.begin(); basicBlockPairIt != basicBlocks.end(); ++basicBlockPairIt) { auto& basicBlock = basicBlockPairIt->second; auto iterCopy = basicBlockPairIt; ++iterCopy; auto nextBasicBlock = (iterCopy != basicBlocks.end()) ? iterCopy->second.llvm() : nullptr; compileBasicBlock(basicBlock, bytecode, memory, ext, gasMeter, nextBasicBlock); } // Code for special blocks: // TODO: move to separate function. // Note: Right now the codegen for special blocks depends only on createBasicBlock(), // not on the codegen for 'regular' blocks. But it has to be done before linkBasicBlocks(). m_builder.SetInsertPoint(m_stopBB); m_builder.CreateRet(Constant::get(ReturnCode::Stop)); m_builder.SetInsertPoint(m_badJumpBlock->llvm()); m_builder.CreateRet(Constant::get(ReturnCode::BadJumpDestination)); m_builder.SetInsertPoint(m_jumpTableBlock->llvm()); if (m_indirectJumpTargets.size() > 0) { auto& stack = m_jumpTableBlock->getStack(); auto dest = stack.pop(); auto switchInstr = m_builder.CreateSwitch(dest, m_badJumpBlock->llvm(), m_indirectJumpTargets.size()); for (auto it = m_indirectJumpTargets.cbegin(); it != m_indirectJumpTargets.cend(); ++it) { auto& bb = *it; auto dest = Constant::get(bb->begin()); switchInstr->addCase(dest, bb->llvm()); } } else { m_builder.CreateBr(m_badJumpBlock->llvm()); } linkBasicBlocks(); return module; } void Compiler::compileBasicBlock(BasicBlock& basicBlock, bytesConstRef bytecode, Memory& memory, Ext& ext, GasMeter& gasMeter, llvm::BasicBlock* nextBasicBlock) { auto& stack = basicBlock.getStack(); m_builder.SetInsertPoint(basicBlock.llvm()); for (auto currentPC = basicBlock.begin(); currentPC != basicBlock.end(); ++currentPC) { auto inst = static_cast(bytecode[currentPC]); gasMeter.count(inst); switch (inst) { case Instruction::ADD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto result = m_builder.CreateAdd(lhs, rhs); stack.push(result); break; } case Instruction::SUB: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto result = m_builder.CreateSub(lhs, rhs); stack.push(result); break; } case Instruction::MUL: { auto lhs256 = stack.pop(); auto rhs256 = stack.pop(); auto lhs128 = m_builder.CreateTrunc(lhs256, Type::lowPrecision); auto rhs128 = m_builder.CreateTrunc(rhs256, Type::lowPrecision); auto res128 = m_builder.CreateMul(lhs128, rhs128); auto res256 = m_builder.CreateZExt(res128, Type::i256); stack.push(res256); break; } case Instruction::DIV: { auto lhs256 = stack.pop(); auto rhs256 = stack.pop(); auto lhs128 = m_builder.CreateTrunc(lhs256, Type::lowPrecision); auto rhs128 = m_builder.CreateTrunc(rhs256, Type::lowPrecision); auto res128 = m_builder.CreateUDiv(lhs128, rhs128); auto res256 = m_builder.CreateZExt(res128, Type::i256); stack.push(res256); break; } case Instruction::SDIV: { auto lhs256 = stack.pop(); auto rhs256 = stack.pop(); auto lhs128 = m_builder.CreateTrunc(lhs256, Type::lowPrecision); auto rhs128 = m_builder.CreateTrunc(rhs256, Type::lowPrecision); auto res128 = m_builder.CreateSDiv(lhs128, rhs128); auto res256 = m_builder.CreateSExt(res128, Type::i256); stack.push(res256); break; } case Instruction::MOD: { auto lhs256 = stack.pop(); auto rhs256 = stack.pop(); auto lhs128 = m_builder.CreateTrunc(lhs256, Type::lowPrecision); auto rhs128 = m_builder.CreateTrunc(rhs256, Type::lowPrecision); auto res128 = m_builder.CreateURem(lhs128, rhs128); auto res256 = m_builder.CreateZExt(res128, Type::i256); stack.push(res256); break; } case Instruction::SMOD: { auto lhs256 = stack.pop(); auto rhs256 = stack.pop(); auto lhs128 = m_builder.CreateTrunc(lhs256, Type::lowPrecision); auto rhs128 = m_builder.CreateTrunc(rhs256, Type::lowPrecision); auto res128 = m_builder.CreateSRem(lhs128, rhs128); auto res256 = m_builder.CreateSExt(res128, Type::i256); stack.push(res256); break; } case Instruction::EXP: { auto left = stack.pop(); auto right = stack.pop(); auto ret = ext.exp(left, right); stack.push(ret); break; } case Instruction::NEG: { auto top = stack.pop(); auto zero = Constant::get(0); auto res = m_builder.CreateSub(zero, top); stack.push(res); break; } case Instruction::LT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpULT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::i256); stack.push(res256); break; } case Instruction::GT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpUGT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::i256); stack.push(res256); break; } case Instruction::SLT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpSLT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::i256); stack.push(res256); break; } case Instruction::SGT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpSGT(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::i256); stack.push(res256); break; } case Instruction::EQ: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = m_builder.CreateICmpEQ(lhs, rhs); auto res256 = m_builder.CreateZExt(res1, Type::i256); stack.push(res256); break; } case Instruction::NOT: { auto top = stack.pop(); auto iszero = m_builder.CreateICmpEQ(top, Constant::get(0), "iszero"); auto result = m_builder.CreateZExt(iszero, Type::i256); stack.push(result); break; } case Instruction::AND: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateAnd(lhs, rhs); stack.push(res); break; } case Instruction::OR: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateOr(lhs, rhs); stack.push(res); break; } case Instruction::XOR: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = m_builder.CreateXor(lhs, rhs); stack.push(res); break; } case Instruction::BYTE: { const auto byteNum = stack.pop(); auto value = stack.pop(); // value = Endianness::toBE(m_builder, value); auto bytes = m_builder.CreateBitCast(value, llvm::VectorType::get(Type::Byte, 32), "bytes"); auto byte = m_builder.CreateExtractElement(bytes, byteNum, "byte"); value = m_builder.CreateZExt(byte, Type::i256); auto byteNumValid = m_builder.CreateICmpULT(byteNum, Constant::get(32)); value = m_builder.CreateSelect(byteNumValid, value, Constant::get(0)); stack.push(value); break; } case Instruction::ADDMOD: { auto val1 = stack.pop(); auto val2 = stack.pop(); auto sum = m_builder.CreateAdd(val1, val2); auto mod = stack.pop(); auto sum128 = m_builder.CreateTrunc(sum, Type::lowPrecision); auto mod128 = m_builder.CreateTrunc(mod, Type::lowPrecision); auto res128 = m_builder.CreateURem(sum128, mod128); auto res256 = m_builder.CreateZExt(res128, Type::i256); stack.push(res256); break; } case Instruction::MULMOD: { auto val1 = stack.pop(); auto val2 = stack.pop(); auto prod = m_builder.CreateMul(val1, val2); auto mod = stack.pop(); auto prod128 = m_builder.CreateTrunc(prod, Type::lowPrecision); auto mod128 = m_builder.CreateTrunc(mod, Type::lowPrecision); auto res128 = m_builder.CreateURem(prod128, mod128); auto res256 = m_builder.CreateZExt(res128, Type::i256); stack.push(res256); break; } case Instruction::SHA3: { auto inOff = stack.pop(); auto inSize = stack.pop(); memory.require(inOff, inSize); auto hash = ext.sha3(inOff, inSize); stack.push(hash); } case Instruction::POP: { stack.pop(); break; } case Instruction::ANY_PUSH: { auto numBytes = static_cast(inst)-static_cast(Instruction::PUSH1) + 1; auto value = llvm::APInt(256, 0); for (decltype(numBytes) i = 0; i < numBytes; ++i) // TODO: Use pc as iterator { ++currentPC; value <<= 8; value |= bytecode[currentPC]; } auto c = m_builder.getInt(value); stack.push(c); break; } case Instruction::ANY_DUP: { auto index = static_cast(inst)-static_cast(Instruction::DUP1); stack.dup(index); break; } case Instruction::ANY_SWAP: { auto index = static_cast(inst)-static_cast(Instruction::SWAP1) + 1; stack.swap(index); break; } case Instruction::MLOAD: { auto addr = stack.pop(); auto word = memory.loadWord(addr); stack.push(word); break; } case Instruction::MSTORE: { auto addr = stack.pop(); auto word = stack.pop(); memory.storeWord(addr, word); break; } case Instruction::MSTORE8: { auto addr = stack.pop(); auto word = stack.pop(); memory.storeByte(addr, word); break; } case Instruction::MSIZE: { auto word = memory.getSize(); stack.push(word); break; } case Instruction::SLOAD: { auto index = stack.pop(); auto value = ext.store(index); stack.push(value); break; } case Instruction::SSTORE: { auto index = stack.pop(); auto value = stack.pop(); gasMeter.countSStore(ext, index, value); ext.setStore(index, value); break; } case Instruction::JUMP: case Instruction::JUMPI: { // Generate direct jump iff: // 1. this is not the first instruction in the block // 2. m_directJumpTargets[currentPC] is defined (meaning that the previous instruction is a PUSH) // Otherwise generate a indirect jump (a switch). llvm::BasicBlock* targetBlock = nullptr; if (currentPC != basicBlock.begin()) { auto pairIter = m_directJumpTargets.find(currentPC); if (pairIter != m_directJumpTargets.end()) { targetBlock = pairIter->second; } } if (inst == Instruction::JUMP) { if (targetBlock) { // The target address is computed at compile time, // just pop it without looking... stack.pop(); m_builder.CreateBr(targetBlock); } else { // FIXME: this get(0) is a temporary workaround to get some of the jump tests running. stack.get(0); m_builder.CreateBr(m_jumpTableBlock->llvm()); } } else // JUMPI { stack.swap(1); auto val = stack.pop(); auto zero = Constant::get(0); auto cond = m_builder.CreateICmpNE(val, zero, "nonzero"); // Assume the basic blocks are properly ordered: assert(nextBasicBlock); // FIXME: JUMPI can be last instruction if (targetBlock) { stack.pop(); m_builder.CreateCondBr(cond, targetBlock, nextBasicBlock); } else { m_builder.CreateCondBr(cond, m_jumpTableBlock->llvm(), nextBasicBlock); } } break; } case Instruction::JUMPDEST: { // Extra asserts just in case. assert(currentPC == basicBlock.begin()); break; } case Instruction::PC: { auto value = Constant::get(currentPC); stack.push(value); break; } case Instruction::GAS: { stack.push(gasMeter.getGas()); break; } case Instruction::ADDRESS: { auto value = ext.address(); stack.push(value); break; } case Instruction::BALANCE: { auto address = stack.pop(); auto value = ext.balance(address); stack.push(value); break; } case Instruction::CALLER: { auto value = ext.caller(); stack.push(value); break; } case Instruction::ORIGIN: { auto value = ext.origin(); stack.push(value); break; } case Instruction::CALLVALUE: { auto value = ext.callvalue(); stack.push(value); break; } case Instruction::CALLDATASIZE: { auto value = ext.calldatasize(); stack.push(value); break; } case Instruction::CODESIZE: { auto value = ext.codesize(); stack.push(value); break; } case Instruction::EXTCODESIZE: { auto addr = stack.pop(); auto value = ext.codesizeAt(addr); stack.push(value); break; } case Instruction::CALLDATACOPY: { auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto srcPtr = ext.calldata(); auto srcSize = ext.calldatasize(); memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes); break; } case Instruction::CODECOPY: { auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto srcPtr = ext.code(); // TODO: Code & its size are constants, feature #80814234 auto srcSize = ext.codesize(); memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes); break; } case Instruction::EXTCODECOPY: { auto extAddr = stack.pop(); auto destMemIdx = stack.pop(); auto srcIdx = stack.pop(); auto reqBytes = stack.pop(); auto srcPtr = ext.codeAt(extAddr); auto srcSize = ext.codesizeAt(extAddr); memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes); break; } case Instruction::CALLDATALOAD: { auto index = stack.pop(); auto value = ext.calldataload(index); stack.push(value); break; } case Instruction::GASPRICE: { auto value = ext.gasprice(); stack.push(value); break; } case Instruction::PREVHASH: { auto value = ext.prevhash(); stack.push(value); break; } case Instruction::COINBASE: { auto value = ext.coinbase(); stack.push(value); break; } case Instruction::TIMESTAMP: { auto value = ext.timestamp(); stack.push(value); break; } case Instruction::NUMBER: { auto value = ext.number(); stack.push(value); break; } case Instruction::DIFFICULTY: { auto value = ext.difficulty(); stack.push(value); break; } case Instruction::GASLIMIT: { auto value = ext.gaslimit(); stack.push(value); break; } case Instruction::CREATE: { auto endowment = stack.pop(); auto initOff = stack.pop(); auto initSize = stack.pop(); memory.require(initOff, initSize); auto address = ext.create(endowment, initOff, initSize); stack.push(address); break; } case Instruction::CALL: case Instruction::CALLCODE: { auto gas = stack.pop(); auto codeAddress = stack.pop(); auto value = stack.pop(); auto inOff = stack.pop(); auto inSize = stack.pop(); auto outOff = stack.pop(); auto outSize = stack.pop(); gasMeter.commitCostBlock(gas); // Require memory for the max of in and out buffers auto inSizeReq = m_builder.CreateAdd(inOff, inSize, "inSizeReq"); auto outSizeReq = m_builder.CreateAdd(outOff, outSize, "outSizeReq"); auto cmp = m_builder.CreateICmpUGT(inSizeReq, outSizeReq); auto sizeReq = m_builder.CreateSelect(cmp, inSizeReq, outSizeReq, "sizeReq"); memory.require(sizeReq); auto receiveAddress = codeAddress; if (inst == Instruction::CALLCODE) receiveAddress = ext.address(); auto ret = ext.call(gas, receiveAddress, value, inOff, inSize, outOff, outSize, codeAddress); gasMeter.giveBack(gas); stack.push(ret); break; } case Instruction::RETURN: { auto index = stack.pop(); auto size = stack.pop(); memory.registerReturnData(index, size); m_builder.CreateRet(Constant::get(ReturnCode::Return)); break; } case Instruction::SUICIDE: { auto address = stack.pop(); ext.suicide(address); // Fall through } case Instruction::STOP: { m_builder.CreateRet(Constant::get(ReturnCode::Stop)); break; } } } gasMeter.commitCostBlock(); if (!basicBlock.llvm()->getTerminator()) // If block not terminated { if (nextBasicBlock) m_builder.CreateBr(nextBasicBlock); // Branch to the next block else m_builder.CreateRet(Constant::get(ReturnCode::Stop)); // Return STOP code } } void Compiler::linkBasicBlocks() { /// Helper function that finds basic block given LLVM basic block pointer auto findBasicBlock = [this](llvm::BasicBlock* _llbb) -> BasicBlock* { // TODO: Fix for finding jumpTableBlock if (_llbb == this->m_jumpTableBlock->llvm()) return this->m_jumpTableBlock.get(); for (auto&& bb : this->basicBlocks) if (_llbb == bb.second.llvm()) return &bb.second; return nullptr; // Name is used to get basic block index (index of first instruction) // TODO: If basicBlocs are still a map - multikey map can be used //auto&& idxStr = _llbb->getName().substr(sizeof(BasicBlock::NamePrefix) - 2); //auto idx = std::stoul(idxStr); //return basicBlocks.find(idx)->second; }; auto completePhiNodes = [findBasicBlock](llvm::BasicBlock* _llbb) -> void { size_t valueIdx = 0; auto firstNonPhi = _llbb->getFirstNonPHI(); for (auto instIt = _llbb->begin(); &*instIt != firstNonPhi; ++instIt, ++valueIdx) { auto phi = llvm::cast(instIt); for (auto predIt = llvm::pred_begin(_llbb); predIt != llvm::pred_end(_llbb); ++predIt) { // TODO: In case entry block is reached - report error auto predBB = findBasicBlock(*predIt); if (!predBB) { std::cerr << "Stack too small in " << _llbb->getName().str() << std::endl; std::exit(1); } auto value = predBB->getStack().get(valueIdx); phi->addIncoming(value, predBB->llvm()); } } }; // TODO: It is crappy visiting of basic blocks. llvm::SmallPtrSet visitSet; for (auto&& bb : basicBlocks) // TODO: External loop is to visit unreable blocks that can also have phi nodes { for (auto it = llvm::po_ext_begin(bb.second.llvm(), visitSet), end = llvm::po_ext_end(bb.second.llvm(), visitSet); it != end; ++it) { // TODO: Use logger //std::cerr << it->getName().str() << std::endl; completePhiNodes(*it); } } // Remove jump table block if not predecessors if (llvm::pred_begin(m_jumpTableBlock->llvm()) == llvm::pred_end(m_jumpTableBlock->llvm())) { m_jumpTableBlock->llvm()->eraseFromParent(); m_jumpTableBlock.reset(); } } void Compiler::dumpBasicBlockGraph(std::ostream& out) { out << "digraph BB {\n" << " node [shape=record];\n" << " entry [share=record, label=\"entry block\"];\n"; std::vector blocks; for (auto& pair : this->basicBlocks) { blocks.push_back(&pair.second); } blocks.push_back(m_jumpTableBlock.get()); blocks.push_back(m_badJumpBlock.get()); // Output nodes for (auto bb : blocks) { std::string blockName = bb->llvm()->getName(); int numOfPhiNodes = 0; auto firstNonPhiPtr = bb->llvm()->getFirstNonPHI(); for (auto instrIter = bb->llvm()->begin(); &*instrIter != firstNonPhiPtr; ++instrIter, ++numOfPhiNodes); auto endStackSize = bb->getStack().size(); out << " \"" << blockName << "\" [shape=record, label=\"" << numOfPhiNodes << "|" << blockName << "|" << endStackSize << "\"];\n"; } out << " entry -> \"Instr.0\";\n"; // Output edges for (auto bb : blocks) { std::string blockName = bb->llvm()->getName(); auto end = llvm::succ_end(bb->llvm()); for (llvm::succ_iterator it = llvm::succ_begin(bb->llvm()); it != end; ++it) { std::string succName = it->getName(); out << " \"" << blockName << "\" -> \"" << succName << "\"" << ((bb == m_jumpTableBlock.get()) ? " [style = dashed];\n" : "\n"); } } out << "}\n"; } } } }