/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Routines used by both the compiler and the expression compiler. */ #include #include #include using namespace std; namespace dev { namespace solidity { const unsigned int CompilerUtils::dataStartOffset = 4; unsigned CompilerUtils::loadFromMemory(unsigned _offset, unsigned _bytes, bool _leftAligned, bool _fromCalldata, bool _padToWordBoundaries) { if (_bytes == 0) { m_context << u256(0); return 0; } eth::Instruction load = _fromCalldata ? eth::Instruction::CALLDATALOAD : eth::Instruction::MLOAD; solAssert(_bytes <= 32, "Memory load of more than 32 bytes requested."); if (_bytes == 32 || _padToWordBoundaries) { m_context << u256(_offset) << load; return 32; } else { // load data and add leading or trailing zeros by dividing/multiplying depending on alignment u256 shiftFactor = u256(1) << ((32 - _bytes) * 8); m_context << shiftFactor; if (_leftAligned) m_context << eth::Instruction::DUP1; m_context << u256(_offset) << load << eth::Instruction::DIV; if (_leftAligned) m_context << eth::Instruction::MUL; return _bytes; } } unsigned CompilerUtils::storeInMemory(unsigned _offset, Type const& _type, bool _padToWordBoundaries) { solAssert(_type.getCategory() != Type::Category::ByteArray, "Unable to statically store dynamic type."); unsigned numBytes = prepareMemoryStore(_type, _padToWordBoundaries); if (numBytes > 0) m_context << u256(_offset) << eth::Instruction::MSTORE; return numBytes; } void CompilerUtils::storeInMemoryDynamic(Type const& _type, bool _padToWordBoundaries) { if (_type.getCategory() == Type::Category::ByteArray) { auto const& type = dynamic_cast(_type); solAssert(type.getLocation() == ByteArrayType::Location::Storage, "Non-storage byte arrays not yet implemented."); m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD; // stack here: memory_offset storage_offset length_bytes // jump to end if length is zero m_context << eth::Instruction::DUP1 << eth::Instruction::ISZERO; eth::AssemblyItem loopEnd = m_context.newTag(); m_context.appendConditionalJumpTo(loopEnd); // compute memory end offset m_context << eth::Instruction::DUP3 << eth::Instruction::ADD << eth::Instruction::SWAP2; // actual array data is stored at SHA3(storage_offset) m_context << eth::Instruction::SWAP1; CompilerUtils(m_context).computeHashStatic(); m_context << eth::Instruction::SWAP1; // stack here: memory_end_offset storage_data_offset memory_offset eth::AssemblyItem loopStart = m_context.newTag(); m_context << loopStart // load and store << eth::Instruction::DUP2 << eth::Instruction::SLOAD << eth::Instruction::DUP2 << eth::Instruction::MSTORE // increment storage_data_offset by 1 << eth::Instruction::SWAP1 << u256(1) << eth::Instruction::ADD // increment memory offset by 32 << eth::Instruction::SWAP1 << u256(32) << eth::Instruction::ADD // check for loop condition << eth::Instruction::DUP1 << eth::Instruction::DUP4 << eth::Instruction::GT; m_context.appendConditionalJumpTo(loopStart); m_context << loopEnd << eth::Instruction::POP << eth::Instruction::POP; } else { unsigned numBytes = prepareMemoryStore(_type, _padToWordBoundaries); if (numBytes > 0) { m_context << eth::Instruction::DUP2 << eth::Instruction::MSTORE; m_context << u256(numBytes) << eth::Instruction::ADD; } } } void CompilerUtils::moveToStackVariable(VariableDeclaration const& _variable) { unsigned const stackPosition = m_context.baseToCurrentStackOffset(m_context.getBaseStackOffsetOfVariable(_variable)); unsigned const size = _variable.getType()->getSizeOnStack(); // move variable starting from its top end in the stack if (stackPosition - size + 1 > 16) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_variable.getLocation()) << errinfo_comment("Stack too deep.")); for (unsigned i = 0; i < size; ++i) m_context << eth::swapInstruction(stackPosition - size + 1) << eth::Instruction::POP; } void CompilerUtils::copyToStackTop(unsigned _stackDepth, Type const& _type) { if (_stackDepth > 16) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_comment("Stack too deep.")); unsigned const size = _type.getSizeOnStack(); for (unsigned i = 0; i < size; ++i) m_context << eth::dupInstruction(_stackDepth); } void CompilerUtils::popStackElement(Type const& _type) { unsigned const size = _type.getSizeOnStack(); for (unsigned i = 0; i < size; ++i) m_context << eth::Instruction::POP; } unsigned CompilerUtils::getSizeOnStack(vector> const& _variableTypes) { unsigned size = 0; for (shared_ptr const& type: _variableTypes) size += type->getSizeOnStack(); return size; } void CompilerUtils::computeHashStatic(Type const& _type, bool _padToWordBoundaries) { unsigned length = storeInMemory(0, _type, _padToWordBoundaries); m_context << u256(length) << u256(0) << eth::Instruction::SHA3; } void CompilerUtils::copyByteArrayToStorage(ByteArrayType const& _targetType, ByteArrayType const& _sourceType) const { // stack layout: [source_ref] target_ref (top) // need to leave target_ref on the stack at the end solAssert(_targetType.getLocation() == ByteArrayType::Location::Storage, ""); switch (_sourceType.getLocation()) { case ByteArrayType::Location::CallData: { // @todo this does not take length into account. It also assumes that after "CALLDATALENGTH" we only have zeros. // fetch old length and convert to words m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD; m_context << u256(31) << eth::Instruction::ADD << u256(32) << eth::Instruction::SWAP1 << eth::Instruction::DIV; // stack here: target_ref target_length_words // actual array data is stored at SHA3(storage_offset) m_context << eth::Instruction::DUP2; CompilerUtils(m_context).computeHashStatic(); // compute target_data_end m_context << eth::Instruction::DUP1 << eth::Instruction::SWAP2 << eth::Instruction::ADD << eth::Instruction::SWAP1; // stack here: target_ref target_data_end target_data_ref // store length (in bytes) m_context << eth::Instruction::CALLDATASIZE; m_context << eth::Instruction::DUP1 << eth::Instruction::DUP5 << eth::Instruction::SSTORE; // jump to end if length is zero m_context << eth::Instruction::ISZERO; eth::AssemblyItem copyLoopEnd = m_context.newTag(); m_context.appendConditionalJumpTo(copyLoopEnd); // store start offset m_context << u256(0); // stack now: target_ref target_data_end target_data_ref calldata_offset eth::AssemblyItem copyLoopStart = m_context.newTag(); m_context << copyLoopStart // copy from calldata and store << eth::Instruction::DUP1 << eth::Instruction::CALLDATALOAD << eth::Instruction::DUP3 << eth::Instruction::SSTORE // increment target_data_ref by 1 << eth::Instruction::SWAP1 << u256(1) << eth::Instruction::ADD // increment calldata_offset by 32 << eth::Instruction::SWAP1 << u256(32) << eth::Instruction::ADD // check for loop condition << eth::Instruction::DUP1 << eth::Instruction::CALLDATASIZE << eth::Instruction::GT; m_context.appendConditionalJumpTo(copyLoopStart); m_context << eth::Instruction::POP; m_context << copyLoopEnd; // now clear leftover bytes of the old value // stack now: target_ref target_data_end target_data_ref clearStorageLoop(); m_context << eth::Instruction::POP; break; } case ByteArrayType::Location::Storage: { // this copies source to target and also clears target if it was larger // stack: source_ref target_ref // store target_ref m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2; // fetch lengthes m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD << eth::Instruction::SWAP2 << eth::Instruction::DUP1 << eth::Instruction::SLOAD; // stack: target_ref target_len_bytes target_ref source_ref source_len_bytes // store new target length m_context << eth::Instruction::DUP1 << eth::Instruction::DUP4 << eth::Instruction::SSTORE; // compute hashes (data positions) m_context << eth::Instruction::SWAP2; CompilerUtils(m_context).computeHashStatic(); m_context << eth::Instruction::SWAP1; CompilerUtils(m_context).computeHashStatic(); // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos // convert lengthes from bytes to storage slots m_context << u256(31) << u256(32) << eth::Instruction::DUP1 << eth::Instruction::DUP3 << eth::Instruction::DUP8 << eth::Instruction::ADD << eth::Instruction::DIV << eth::Instruction::SWAP2 << eth::Instruction::DUP6 << eth::Instruction::ADD << eth::Instruction::DIV; // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos target_len source_len // @todo we might be able to go without a third counter m_context << u256(0); // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos target_len source_len counter eth::AssemblyItem copyLoopStart = m_context.newTag(); m_context << copyLoopStart; // check for loop condition m_context << eth::Instruction::DUP1 << eth::Instruction::DUP3 << eth::Instruction::GT << eth::Instruction::ISZERO; eth::AssemblyItem copyLoopEnd = m_context.newTag(); m_context.appendConditionalJumpTo(copyLoopEnd); // copy m_context << eth::Instruction::DUP4 << eth::Instruction::DUP2 << eth::Instruction::ADD << eth::Instruction::SLOAD << eth::Instruction::DUP6 << eth::Instruction::DUP3 << eth::Instruction::ADD << eth::Instruction::SSTORE; // increment m_context << u256(1) << eth::Instruction::ADD; m_context.appendJumpTo(copyLoopStart); m_context << copyLoopEnd; // zero-out leftovers in target // stack: target_ref target_len_bytes source_len_bytes target_data_pos source_data_pos target_len source_len counter // add counter to target_data_pos m_context << eth::Instruction::DUP5 << eth::Instruction::ADD << eth::Instruction::SWAP5 << eth::Instruction::POP; // stack: target_ref target_len_bytes target_data_pos_updated target_data_pos source_data_pos target_len source_len // add length to target_data_pos to get target_data_end m_context << eth::Instruction::POP << eth::Instruction::DUP3 << eth::Instruction::ADD << eth::Instruction::SWAP4 << eth::Instruction::POP << eth::Instruction::POP << eth::Instruction::POP; // stack: target_ref target_data_end target_data_pos_updated clearStorageLoop(); m_context << eth::Instruction::POP; break; } default: solAssert(false, "Given byte array location not implemented."); } } void CompilerUtils::clearByteArray(ByteArrayType const& _type) const { solAssert(_type.getLocation() == ByteArrayType::Location::Storage, ""); // fetch length m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD; // set length to zero m_context << u256(0) << eth::Instruction::DUP3 << eth::Instruction::SSTORE; // convert length from bytes to storage slots m_context << u256(31) << eth::Instruction::ADD << u256(32) << eth::Instruction::SWAP1 << eth::Instruction::DIV; // compute data positions m_context << eth::Instruction::SWAP1; CompilerUtils(m_context).computeHashStatic(); // stack: len data_pos m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2 << eth::Instruction::ADD << eth::Instruction::SWAP1; clearStorageLoop(); // cleanup m_context << eth::Instruction::POP; } unsigned CompilerUtils::prepareMemoryStore(Type const& _type, bool _padToWordBoundaries) const { unsigned _encodedSize = _type.getCalldataEncodedSize(); unsigned numBytes = _padToWordBoundaries ? getPaddedSize(_encodedSize) : _encodedSize; bool leftAligned = _type.getCategory() == Type::Category::String; if (numBytes == 0) m_context << eth::Instruction::POP; else { solAssert(numBytes <= 32, "Memory store of more than 32 bytes requested."); if (numBytes != 32 && !leftAligned && !_padToWordBoundaries) // shift the value accordingly before storing m_context << (u256(1) << ((32 - numBytes) * 8)) << eth::Instruction::MUL; } return numBytes; } void CompilerUtils::clearStorageLoop() const { // stack: end_pos pos eth::AssemblyItem loopStart = m_context.newTag(); m_context << loopStart; // check for loop condition m_context << eth::Instruction::DUP1 << eth::Instruction::DUP3 << eth::Instruction::GT << eth::Instruction::ISZERO; eth::AssemblyItem zeroLoopEnd = m_context.newTag(); m_context.appendConditionalJumpTo(zeroLoopEnd); // zero out m_context << u256(0) << eth::Instruction::DUP2 << eth::Instruction::SSTORE; // increment m_context << u256(1) << eth::Instruction::ADD; m_context.appendJumpTo(loopStart); // cleanup m_context << zeroLoopEnd; m_context << eth::Instruction::POP; } } }