/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity AST to EVM bytecode compiler for expressions. */ #include #include #include #include #include #include #include #include #include using namespace std; namespace dev { namespace solidity { void ExpressionCompiler::compileExpression(CompilerContext& _context, Expression const& _expression, bool _optimize) { ExpressionCompiler compiler(_context, _optimize); _expression.accept(compiler); } void ExpressionCompiler::appendTypeConversion(CompilerContext& _context, Type const& _typeOnStack, Type const& _targetType, bool _cleanupNeeded) { ExpressionCompiler compiler(_context); compiler.appendTypeConversion(_typeOnStack, _targetType, _cleanupNeeded); } void ExpressionCompiler::appendStateVariableAccessor(CompilerContext& _context, VariableDeclaration const& _varDecl, bool _optimize) { ExpressionCompiler compiler(_context, _optimize); compiler.appendStateVariableAccessor(_varDecl); } bool ExpressionCompiler::visit(Assignment const& _assignment) { _assignment.getRightHandSide().accept(*this); if (_assignment.getType()->isValueType()) appendTypeConversion(*_assignment.getRightHandSide().getType(), *_assignment.getType()); _assignment.getLeftHandSide().accept(*this); solAssert(m_currentLValue.isValid(), "LValue not retrieved."); Token::Value op = _assignment.getAssignmentOperator(); if (op != Token::Assign) // compound assignment { solAssert(_assignment.getType()->isValueType(), "Compound operators not implemented for non-value types."); if (m_currentLValue.storesReferenceOnStack()) m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2; m_currentLValue.retrieveValue(_assignment.getType(), _assignment.getLocation(), true); appendOrdinaryBinaryOperatorCode(Token::AssignmentToBinaryOp(op), *_assignment.getType()); if (m_currentLValue.storesReferenceOnStack()) m_context << eth::Instruction::SWAP1; } m_currentLValue.storeValue(_assignment, *_assignment.getRightHandSide().getType()); m_currentLValue.reset(); return false; } bool ExpressionCompiler::visit(UnaryOperation const& _unaryOperation) { //@todo type checking and creating code for an operator should be in the same place: // the operator should know how to convert itself and to which types it applies, so // put this code together with "Type::acceptsBinary/UnaryOperator" into a class that // represents the operator if (_unaryOperation.getType()->getCategory() == Type::Category::IntegerConstant) { m_context << _unaryOperation.getType()->literalValue(nullptr); return false; } _unaryOperation.getSubExpression().accept(*this); switch (_unaryOperation.getOperator()) { case Token::Not: // ! m_context << eth::Instruction::ISZERO; break; case Token::BitNot: // ~ m_context << eth::Instruction::NOT; break; case Token::Delete: // delete solAssert(m_currentLValue.isValid(), "LValue not retrieved."); m_currentLValue.setToZero(_unaryOperation, *_unaryOperation.getSubExpression().getType()); m_currentLValue.reset(); break; case Token::Inc: // ++ (pre- or postfix) case Token::Dec: // -- (pre- or postfix) solAssert(m_currentLValue.isValid(), "LValue not retrieved."); m_currentLValue.retrieveValue(_unaryOperation.getType(), _unaryOperation.getLocation()); if (!_unaryOperation.isPrefixOperation()) { if (m_currentLValue.storesReferenceOnStack()) m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2; else m_context << eth::Instruction::DUP1; } m_context << u256(1); if (_unaryOperation.getOperator() == Token::Inc) m_context << eth::Instruction::ADD; else m_context << eth::Instruction::SWAP1 << eth::Instruction::SUB; // @todo avoid the swap // Stack for prefix: [ref] (*ref)+-1 // Stack for postfix: *ref [ref] (*ref)+-1 if (m_currentLValue.storesReferenceOnStack()) m_context << eth::Instruction::SWAP1; m_currentLValue.storeValue(_unaryOperation, *_unaryOperation.getType(), !_unaryOperation.isPrefixOperation()); m_currentLValue.reset(); break; case Token::Add: // + // unary add, so basically no-op break; case Token::Sub: // - m_context << u256(0) << eth::Instruction::SUB; break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid unary operator: " + string(Token::toString(_unaryOperation.getOperator())))); } return false; } bool ExpressionCompiler::visit(BinaryOperation const& _binaryOperation) { Expression const& leftExpression = _binaryOperation.getLeftExpression(); Expression const& rightExpression = _binaryOperation.getRightExpression(); Type const& commonType = _binaryOperation.getCommonType(); Token::Value const c_op = _binaryOperation.getOperator(); if (c_op == Token::And || c_op == Token::Or) // special case: short-circuiting appendAndOrOperatorCode(_binaryOperation); else if (commonType.getCategory() == Type::Category::IntegerConstant) m_context << commonType.literalValue(nullptr); else { bool cleanupNeeded = commonType.getCategory() == Type::Category::Integer && (Token::isCompareOp(c_op) || c_op == Token::Div || c_op == Token::Mod); // for commutative operators, push the literal as late as possible to allow improved optimization auto isLiteral = [](Expression const& _e) { return dynamic_cast(&_e) || _e.getType()->getCategory() == Type::Category::IntegerConstant; }; bool swap = m_optimize && Token::isCommutativeOp(c_op) && isLiteral(rightExpression) && !isLiteral(leftExpression); if (swap) { leftExpression.accept(*this); appendTypeConversion(*leftExpression.getType(), commonType, cleanupNeeded); rightExpression.accept(*this); appendTypeConversion(*rightExpression.getType(), commonType, cleanupNeeded); } else { rightExpression.accept(*this); appendTypeConversion(*rightExpression.getType(), commonType, cleanupNeeded); leftExpression.accept(*this); appendTypeConversion(*leftExpression.getType(), commonType, cleanupNeeded); } if (Token::isCompareOp(c_op)) appendCompareOperatorCode(c_op, commonType); else appendOrdinaryBinaryOperatorCode(c_op, commonType); } // do not visit the child nodes, we already did that explicitly return false; } bool ExpressionCompiler::visit(FunctionCall const& _functionCall) { using Location = FunctionType::Location; if (_functionCall.isTypeConversion()) { //@todo struct construction solAssert(_functionCall.getArguments().size() == 1, ""); solAssert(_functionCall.getNames().empty(), ""); Expression const& firstArgument = *_functionCall.getArguments().front(); firstArgument.accept(*this); appendTypeConversion(*firstArgument.getType(), *_functionCall.getType()); } else { FunctionType const& function = dynamic_cast(*_functionCall.getExpression().getType()); TypePointers const& parameterTypes = function.getParameterTypes(); vector> const& callArguments = _functionCall.getArguments(); vector> const& callArgumentNames = _functionCall.getNames(); if (!function.takesArbitraryParameters()) solAssert(callArguments.size() == parameterTypes.size(), ""); vector> arguments; if (callArgumentNames.empty()) // normal arguments arguments = callArguments; else // named arguments for (auto const& parameterName: function.getParameterNames()) { bool found = false; for (size_t j = 0; j < callArgumentNames.size() && !found; j++) if ((found = (parameterName == *callArgumentNames[j]))) // we found the actual parameter position arguments.push_back(callArguments[j]); solAssert(found, ""); } switch (function.getLocation()) { case Location::Internal: { // Calling convention: Caller pushes return address and arguments // Callee removes them and pushes return values eth::AssemblyItem returnLabel = m_context.pushNewTag(); for (unsigned i = 0; i < arguments.size(); ++i) { arguments[i]->accept(*this); appendTypeConversion(*arguments[i]->getType(), *function.getParameterTypes()[i]); } _functionCall.getExpression().accept(*this); m_context.appendJump(); m_context << returnLabel; unsigned returnParametersSize = CompilerUtils::getSizeOnStack(function.getReturnParameterTypes()); // callee adds return parameters, but removes arguments and return label m_context.adjustStackOffset(returnParametersSize - CompilerUtils::getSizeOnStack(function.getParameterTypes()) - 1); // @todo for now, the return value of a function is its first return value, so remove // all others for (unsigned i = 1; i < function.getReturnParameterTypes().size(); ++i) CompilerUtils(m_context).popStackElement(*function.getReturnParameterTypes()[i]); break; } case Location::External: case Location::Bare: _functionCall.getExpression().accept(*this); appendExternalFunctionCall(function, arguments, function.getLocation() == Location::Bare); break; case Location::Creation: { _functionCall.getExpression().accept(*this); solAssert(!function.gasSet(), "Gas limit set for contract creation."); solAssert(function.getReturnParameterTypes().size() == 1, ""); ContractDefinition const& contract = dynamic_cast( *function.getReturnParameterTypes().front()).getContractDefinition(); // copy the contract's code into memory bytes const& bytecode = m_context.getCompiledContract(contract); m_context << u256(bytecode.size()); //@todo could be done by actually appending the Assembly, but then we probably need to compile // multiple times. Will revisit once external fuctions are inlined. m_context.appendData(bytecode); //@todo copy to memory position 0, shift as soon as we use memory m_context << u256(0) << eth::Instruction::CODECOPY; m_context << u256(bytecode.size()); appendArgumentsCopyToMemory(arguments, function.getParameterTypes()); // size, offset, endowment m_context << u256(0); if (function.valueSet()) m_context << eth::dupInstruction(3); else m_context << u256(0); m_context << eth::Instruction::CREATE; if (function.valueSet()) m_context << eth::swapInstruction(1) << eth::Instruction::POP; break; } case Location::SetGas: { // stack layout: contract_address function_id [gas] [value] _functionCall.getExpression().accept(*this); arguments.front()->accept(*this); appendTypeConversion(*arguments.front()->getType(), IntegerType(256), true); // Note that function is not the original function, but the ".gas" function. // Its values of gasSet and valueSet is equal to the original function's though. unsigned stackDepth = (function.gasSet() ? 1 : 0) + (function.valueSet() ? 1 : 0); if (stackDepth > 0) m_context << eth::swapInstruction(stackDepth); if (function.gasSet()) m_context << eth::Instruction::POP; break; } case Location::SetValue: // stack layout: contract_address function_id [gas] [value] _functionCall.getExpression().accept(*this); // Note that function is not the original function, but the ".value" function. // Its values of gasSet and valueSet is equal to the original function's though. if (function.valueSet()) m_context << eth::Instruction::POP; arguments.front()->accept(*this); break; case Location::Send: _functionCall.getExpression().accept(*this); m_context << u256(0); // 0 gas, we do not want to execute code arguments.front()->accept(*this); appendTypeConversion(*arguments.front()->getType(), *function.getParameterTypes().front(), true); appendExternalFunctionCall(FunctionType(TypePointers{}, TypePointers{}, Location::External, false, true, true), {}, true); break; case Location::Suicide: arguments.front()->accept(*this); appendTypeConversion(*arguments.front()->getType(), *function.getParameterTypes().front(), true); m_context << eth::Instruction::SUICIDE; break; case Location::SHA3: { m_context << u256(0); appendArgumentsCopyToMemory(arguments, TypePointers(), function.padArguments()); m_context << u256(0) << eth::Instruction::SHA3; break; } case Location::Log0: case Location::Log1: case Location::Log2: case Location::Log3: case Location::Log4: { unsigned logNumber = int(function.getLocation()) - int(Location::Log0); for (unsigned arg = logNumber; arg > 0; --arg) { arguments[arg]->accept(*this); appendTypeConversion(*arguments[arg]->getType(), *function.getParameterTypes()[arg], true); } m_context << u256(0); appendExpressionCopyToMemory(*function.getParameterTypes().front(), *arguments.front()); m_context << u256(0) << eth::logInstruction(logNumber); break; } case Location::Event: { _functionCall.getExpression().accept(*this); auto const& event = dynamic_cast(function.getDeclaration()); unsigned numIndexed = 0; // All indexed arguments go to the stack for (unsigned arg = arguments.size(); arg > 0; --arg) if (event.getParameters()[arg - 1]->isIndexed()) { ++numIndexed; arguments[arg - 1]->accept(*this); appendTypeConversion(*arguments[arg - 1]->getType(), *function.getParameterTypes()[arg - 1], true); } m_context << u256(h256::Arith(dev::sha3(function.getCanonicalSignature(event.getName())))); ++numIndexed; solAssert(numIndexed <= 4, "Too many indexed arguments."); // Copy all non-indexed arguments to memory (data) m_context << u256(0); for (unsigned arg = 0; arg < arguments.size(); ++arg) if (!event.getParameters()[arg]->isIndexed()) appendExpressionCopyToMemory(*function.getParameterTypes()[arg], *arguments[arg]); m_context << u256(0) << eth::logInstruction(numIndexed); break; } case Location::BlockHash: { arguments[0]->accept(*this); appendTypeConversion(*arguments[0]->getType(), *function.getParameterTypes()[0], true); m_context << eth::Instruction::BLOCKHASH; break; } case Location::ECRecover: case Location::SHA256: case Location::RIPEMD160: { static const map contractAddresses{{Location::ECRecover, 1}, {Location::SHA256, 2}, {Location::RIPEMD160, 3}}; m_context << contractAddresses.find(function.getLocation())->second; appendExternalFunctionCall(function, arguments, true); break; } default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid function type.")); } } return false; } bool ExpressionCompiler::visit(NewExpression const&) { // code is created for the function call (CREATION) only return false; } void ExpressionCompiler::endVisit(MemberAccess const& _memberAccess) { ASTString const& member = _memberAccess.getMemberName(); switch (_memberAccess.getExpression().getType()->getCategory()) { case Type::Category::Contract: { bool alsoSearchInteger = false; ContractType const& type = dynamic_cast(*_memberAccess.getExpression().getType()); if (type.isSuper()) m_context << m_context.getSuperFunctionEntryLabel(member, type.getContractDefinition()).pushTag(); else { // ordinary contract type u256 identifier = type.getFunctionIdentifier(member); if (identifier != Invalid256) { appendTypeConversion(type, IntegerType(0, IntegerType::Modifier::Address), true); m_context << identifier; } else // not found in contract, search in members inherited from address alsoSearchInteger = true; } if (!alsoSearchInteger) break; } case Type::Category::Integer: if (member == "balance") { appendTypeConversion(*_memberAccess.getExpression().getType(), IntegerType(0, IntegerType::Modifier::Address), true); m_context << eth::Instruction::BALANCE; } else if (member == "send" || member.substr(0, min(member.size(), 4)) == "call") appendTypeConversion(*_memberAccess.getExpression().getType(), IntegerType(0, IntegerType::Modifier::Address), true); else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid member access to integer.")); break; case Type::Category::Function: solAssert(!!_memberAccess.getExpression().getType()->getMemberType(member), "Invalid member access to function."); break; case Type::Category::Magic: // we can ignore the kind of magic and only look at the name of the member if (member == "coinbase") m_context << eth::Instruction::COINBASE; else if (member == "timestamp") m_context << eth::Instruction::TIMESTAMP; else if (member == "difficulty") m_context << eth::Instruction::DIFFICULTY; else if (member == "number") m_context << eth::Instruction::NUMBER; else if (member == "gaslimit") m_context << eth::Instruction::GASLIMIT; else if (member == "sender") m_context << eth::Instruction::CALLER; else if (member == "value") m_context << eth::Instruction::CALLVALUE; else if (member == "origin") m_context << eth::Instruction::ORIGIN; else if (member == "gas") m_context << eth::Instruction::GAS; else if (member == "gasprice") m_context << eth::Instruction::GASPRICE; else if (member == "data") { // nothing to store on the stack } else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown magic member.")); break; case Type::Category::Struct: { StructType const& type = dynamic_cast(*_memberAccess.getExpression().getType()); m_context << type.getStorageOffsetOfMember(member) << eth::Instruction::ADD; m_currentLValue = LValue(m_context, LValue::LValueType::Storage, *_memberAccess.getType()); m_currentLValue.retrieveValueIfLValueNotRequested(_memberAccess); break; } case Type::Category::TypeType: { TypeType const& type = dynamic_cast(*_memberAccess.getExpression().getType()); if (type.getMembers().getMemberType(member)) { ContractDefinition const& contract = dynamic_cast(*type.getActualType()) .getContractDefinition(); for (ASTPointer const& function: contract.getDefinedFunctions()) if (function->getName() == member) { m_context << m_context.getFunctionEntryLabel(*function).pushTag(); return; } } BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid member access to " + type.toString())); } case Type::Category::ByteArray: { solAssert(member == "length", "Illegal bytearray member."); m_context << eth::Instruction::SLOAD; break; } default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Member access to unknown type.")); } } bool ExpressionCompiler::visit(IndexAccess const& _indexAccess) { _indexAccess.getBaseExpression().accept(*this); Type const& baseType = *_indexAccess.getBaseExpression().getType(); solAssert(baseType.getCategory() == Type::Category::Mapping, ""); Type const& keyType = *dynamic_cast(baseType).getKeyType(); m_context << u256(0); appendExpressionCopyToMemory(keyType, _indexAccess.getIndexExpression()); solAssert(baseType.getSizeOnStack() == 1, "Unexpected: Not exactly one stack slot taken by subscriptable expression."); m_context << eth::Instruction::SWAP1; appendTypeMoveToMemory(IntegerType(256)); m_context << u256(0) << eth::Instruction::SHA3; m_currentLValue = LValue(m_context, LValue::LValueType::Storage, *_indexAccess.getType()); m_currentLValue.retrieveValueIfLValueNotRequested(_indexAccess); return false; } void ExpressionCompiler::endVisit(Identifier const& _identifier) { Declaration const* declaration = _identifier.getReferencedDeclaration(); if (MagicVariableDeclaration const* magicVar = dynamic_cast(declaration)) { if (magicVar->getType()->getCategory() == Type::Category::Contract) // "this" or "super" if (!dynamic_cast(*magicVar->getType()).isSuper()) m_context << eth::Instruction::ADDRESS; } else if (FunctionDefinition const* functionDef = dynamic_cast(declaration)) m_context << m_context.getVirtualFunctionEntryLabel(*functionDef).pushTag(); else if (dynamic_cast(declaration)) { m_currentLValue.fromIdentifier(_identifier, *declaration); m_currentLValue.retrieveValueIfLValueNotRequested(_identifier); } else if (dynamic_cast(declaration)) { // no-op } else if (dynamic_cast(declaration)) { // no-op } else { BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Identifier type not expected in expression context.")); } } void ExpressionCompiler::endVisit(Literal const& _literal) { switch (_literal.getType()->getCategory()) { case Type::Category::IntegerConstant: case Type::Category::Bool: case Type::Category::String: m_context << _literal.getType()->literalValue(&_literal); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Only integer, boolean and string literals implemented for now.")); } } void ExpressionCompiler::appendAndOrOperatorCode(BinaryOperation const& _binaryOperation) { Token::Value const c_op = _binaryOperation.getOperator(); solAssert(c_op == Token::Or || c_op == Token::And, ""); _binaryOperation.getLeftExpression().accept(*this); m_context << eth::Instruction::DUP1; if (c_op == Token::And) m_context << eth::Instruction::ISZERO; eth::AssemblyItem endLabel = m_context.appendConditionalJump(); m_context << eth::Instruction::POP; _binaryOperation.getRightExpression().accept(*this); m_context << endLabel; } void ExpressionCompiler::appendCompareOperatorCode(Token::Value _operator, Type const& _type) { if (_operator == Token::Equal || _operator == Token::NotEqual) { m_context << eth::Instruction::EQ; if (_operator == Token::NotEqual) m_context << eth::Instruction::ISZERO; } else { IntegerType const& type = dynamic_cast(_type); bool const c_isSigned = type.isSigned(); switch (_operator) { case Token::GreaterThanOrEqual: m_context << (c_isSigned ? eth::Instruction::SLT : eth::Instruction::LT) << eth::Instruction::ISZERO; break; case Token::LessThanOrEqual: m_context << (c_isSigned ? eth::Instruction::SGT : eth::Instruction::GT) << eth::Instruction::ISZERO; break; case Token::GreaterThan: m_context << (c_isSigned ? eth::Instruction::SGT : eth::Instruction::GT); break; case Token::LessThan: m_context << (c_isSigned ? eth::Instruction::SLT : eth::Instruction::LT); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown comparison operator.")); } } } void ExpressionCompiler::appendOrdinaryBinaryOperatorCode(Token::Value _operator, Type const& _type) { if (Token::isArithmeticOp(_operator)) appendArithmeticOperatorCode(_operator, _type); else if (Token::isBitOp(_operator)) appendBitOperatorCode(_operator); else if (Token::isShiftOp(_operator)) appendShiftOperatorCode(_operator); else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown binary operator.")); } void ExpressionCompiler::appendArithmeticOperatorCode(Token::Value _operator, Type const& _type) { IntegerType const& type = dynamic_cast(_type); bool const c_isSigned = type.isSigned(); switch (_operator) { case Token::Add: m_context << eth::Instruction::ADD; break; case Token::Sub: m_context << eth::Instruction::SUB; break; case Token::Mul: m_context << eth::Instruction::MUL; break; case Token::Div: m_context << (c_isSigned ? eth::Instruction::SDIV : eth::Instruction::DIV); break; case Token::Mod: m_context << (c_isSigned ? eth::Instruction::SMOD : eth::Instruction::MOD); break; case Token::Exp: m_context << eth::Instruction::EXP; break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown arithmetic operator.")); } } void ExpressionCompiler::appendBitOperatorCode(Token::Value _operator) { switch (_operator) { case Token::BitOr: m_context << eth::Instruction::OR; break; case Token::BitAnd: m_context << eth::Instruction::AND; break; case Token::BitXor: m_context << eth::Instruction::XOR; break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown bit operator.")); } } void ExpressionCompiler::appendShiftOperatorCode(Token::Value _operator) { BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Shift operators not yet implemented.")); switch (_operator) { case Token::SHL: break; case Token::SAR: break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Unknown shift operator.")); } } void ExpressionCompiler::appendTypeConversion(Type const& _typeOnStack, Type const& _targetType, bool _cleanupNeeded) { // For a type extension, we need to remove all higher-order bits that we might have ignored in // previous operations. // @todo: store in the AST whether the operand might have "dirty" higher order bits if (_typeOnStack == _targetType && !_cleanupNeeded) return; Type::Category stackTypeCategory = _typeOnStack.getCategory(); Type::Category targetTypeCategory = _targetType.getCategory(); if (stackTypeCategory == Type::Category::String) { StaticStringType const& typeOnStack = dynamic_cast(_typeOnStack); if (targetTypeCategory == Type::Category::Integer) { // conversion from string to hash. no need to clean the high bit // only to shift right because of opposite alignment IntegerType const& targetIntegerType = dynamic_cast(_targetType); solAssert(targetIntegerType.isHash(), "Only conversion between String and Hash is allowed."); solAssert(targetIntegerType.getNumBits() == typeOnStack.getNumBytes() * 8, "The size should be the same."); m_context << (u256(1) << (256 - typeOnStack.getNumBytes() * 8)) << eth::Instruction::SWAP1 << eth::Instruction::DIV; } else { // clear lower-order bytes for conversion to shorter strings - we always clean solAssert(targetTypeCategory == Type::Category::String, "Invalid type conversion requested."); StaticStringType const& targetType = dynamic_cast(_targetType); if (targetType.getNumBytes() < typeOnStack.getNumBytes()) { if (targetType.getNumBytes() == 0) m_context << eth::Instruction::DUP1 << eth::Instruction::XOR; else m_context << (u256(1) << (256 - targetType.getNumBytes() * 8)) << eth::Instruction::DUP1 << eth::Instruction::SWAP2 << eth::Instruction::DIV << eth::Instruction::MUL; } } } else if (stackTypeCategory == Type::Category::Integer || stackTypeCategory == Type::Category::Contract || stackTypeCategory == Type::Category::IntegerConstant) { if (targetTypeCategory == Type::Category::String && stackTypeCategory == Type::Category::Integer) { // conversion from hash to string. no need to clean the high bit // only to shift left because of opposite alignment StaticStringType const& targetStringType = dynamic_cast(_targetType); IntegerType const& typeOnStack = dynamic_cast(_typeOnStack); solAssert(typeOnStack.isHash(), "Only conversion between String and Hash is allowed."); solAssert(typeOnStack.getNumBits() == targetStringType.getNumBytes() * 8, "The size should be the same."); m_context << (u256(1) << (256 - typeOnStack.getNumBits())) << eth::Instruction::MUL; } else { solAssert(targetTypeCategory == Type::Category::Integer || targetTypeCategory == Type::Category::Contract, ""); IntegerType addressType(0, IntegerType::Modifier::Address); IntegerType const& targetType = targetTypeCategory == Type::Category::Integer ? dynamic_cast(_targetType) : addressType; if (stackTypeCategory == Type::Category::IntegerConstant) { IntegerConstantType const& constType = dynamic_cast(_typeOnStack); // We know that the stack is clean, we only have to clean for a narrowing conversion // where cleanup is forced. if (targetType.getNumBits() < constType.getIntegerType()->getNumBits() && _cleanupNeeded) appendHighBitsCleanup(targetType); } else { IntegerType const& typeOnStack = stackTypeCategory == Type::Category::Integer ? dynamic_cast(_typeOnStack) : addressType; // Widening: clean up according to source type width // Non-widening and force: clean up according to target type bits if (targetType.getNumBits() > typeOnStack.getNumBits()) appendHighBitsCleanup(typeOnStack); else if (_cleanupNeeded) appendHighBitsCleanup(targetType); } } } else if (_typeOnStack != _targetType) // All other types should not be convertible to non-equal types. BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_comment("Invalid type conversion requested.")); } void ExpressionCompiler::appendHighBitsCleanup(IntegerType const& _typeOnStack) { if (_typeOnStack.getNumBits() == 256) return; else if (_typeOnStack.isSigned()) m_context << u256(_typeOnStack.getNumBits() / 8 - 1) << eth::Instruction::SIGNEXTEND; else m_context << ((u256(1) << _typeOnStack.getNumBits()) - 1) << eth::Instruction::AND; } void ExpressionCompiler::appendExternalFunctionCall(FunctionType const& _functionType, vector> const& _arguments, bool bare) { solAssert(_functionType.takesArbitraryParameters() || _arguments.size() == _functionType.getParameterTypes().size(), ""); // Assumed stack content here: // // value [if _functionType.valueSet()] // gas [if _functionType.gasSet()] // function identifier [unless bare] // contract address unsigned gasValueSize = (_functionType.gasSet() ? 1 : 0) + (_functionType.valueSet() ? 1 : 0); unsigned contractStackPos = m_context.currentToBaseStackOffset(1 + gasValueSize + (bare ? 0 : 1)); unsigned gasStackPos = m_context.currentToBaseStackOffset(gasValueSize); unsigned valueStackPos = m_context.currentToBaseStackOffset(1); //@todo only return the first return value for now Type const* firstType = _functionType.getReturnParameterTypes().empty() ? nullptr : _functionType.getReturnParameterTypes().front().get(); unsigned retSize = firstType ? CompilerUtils::getPaddedSize(firstType->getCalldataEncodedSize()) : 0; m_context << u256(retSize) << u256(0); if (bare) m_context << u256(0); else { // copy function identifier m_context << eth::dupInstruction(gasValueSize + 3); CompilerUtils(m_context).storeInMemory(0, IntegerType(CompilerUtils::dataStartOffset * 8)); m_context << u256(CompilerUtils::dataStartOffset); } // For bare call, activate "4 byte pad exception": If the first argument has exactly 4 bytes, // do not pad it to 32 bytes. appendArgumentsCopyToMemory(_arguments, _functionType.getParameterTypes(), _functionType.padArguments(), bare); // CALL arguments: outSize, outOff, inSize, (already present up to here) // inOff, value, addr, gas (stack top) m_context << u256(0); if (_functionType.valueSet()) m_context << eth::dupInstruction(m_context.baseToCurrentStackOffset(valueStackPos)); else m_context << u256(0); m_context << eth::dupInstruction(m_context.baseToCurrentStackOffset(contractStackPos)); if (_functionType.gasSet()) m_context << eth::dupInstruction(m_context.baseToCurrentStackOffset(gasStackPos)); else // send all gas except for the 21 needed to execute "SUB" and "CALL" m_context << u256(21) << eth::Instruction::GAS << eth::Instruction::SUB; m_context << eth::Instruction::CALL << eth::Instruction::POP; // @todo do not ignore failure indicator if (_functionType.valueSet()) m_context << eth::Instruction::POP; if (_functionType.gasSet()) m_context << eth::Instruction::POP; if (!bare) m_context << eth::Instruction::POP; m_context << eth::Instruction::POP; // pop contract address if (retSize > 0) { bool const c_leftAligned = firstType->getCategory() == Type::Category::String; CompilerUtils(m_context).loadFromMemory(0, retSize, c_leftAligned, false, true); } } void ExpressionCompiler::appendArgumentsCopyToMemory(vector> const& _arguments, TypePointers const& _types, bool _padToWordBoundaries, bool _padExceptionIfFourBytes) { solAssert(_types.empty() || _types.size() == _arguments.size(), ""); for (size_t i = 0; i < _arguments.size(); ++i) { _arguments[i]->accept(*this); TypePointer const& expectedType = _types.empty() ? _arguments[i]->getType()->getRealType() : _types[i]; appendTypeConversion(*_arguments[i]->getType(), *expectedType, true); bool pad = _padToWordBoundaries; // Do not pad if the first argument has exactly four bytes if (i == 0 && pad && _padExceptionIfFourBytes && expectedType->getCalldataEncodedSize() == 4) pad = false; appendTypeMoveToMemory(*expectedType, pad); } } void ExpressionCompiler::appendTypeMoveToMemory(Type const& _type, bool _padToWordBoundaries) { CompilerUtils(m_context).storeInMemoryDynamic(_type, _padToWordBoundaries); } void ExpressionCompiler::appendExpressionCopyToMemory(Type const& _expectedType, Expression const& _expression) { _expression.accept(*this); appendTypeConversion(*_expression.getType(), _expectedType, true); appendTypeMoveToMemory(_expectedType); } void ExpressionCompiler::appendStateVariableAccessor(VariableDeclaration const& _varDecl) { FunctionType accessorType(_varDecl); unsigned length = 0; TypePointers const& paramTypes = accessorType.getParameterTypes(); // move arguments to memory for (TypePointer const& paramType: boost::adaptors::reverse(paramTypes)) length += CompilerUtils(m_context).storeInMemory(length, *paramType, true); // retrieve the position of the variable m_context << m_context.getStorageLocationOfVariable(_varDecl); TypePointer returnType = _varDecl.getType(); for (TypePointer const& paramType: paramTypes) { // move offset to memory CompilerUtils(m_context).storeInMemory(length); unsigned argLen = CompilerUtils::getPaddedSize(paramType->getCalldataEncodedSize()); length -= argLen; m_context << u256(argLen + 32) << u256(length) << eth::Instruction::SHA3; returnType = dynamic_cast(*returnType).getValueType(); } unsigned retSizeOnStack = 0; solAssert(accessorType.getReturnParameterTypes().size() >= 1, ""); if (StructType const* structType = dynamic_cast(returnType.get())) { auto const& names = accessorType.getReturnParameterNames(); auto const& types = accessorType.getReturnParameterTypes(); // struct for (size_t i = 0; i < names.size(); ++i) { m_context << eth::Instruction::DUP1 << structType->getStorageOffsetOfMember(names[i]) << eth::Instruction::ADD; m_currentLValue = LValue(m_context, LValue::LValueType::Storage, *types[i]); m_currentLValue.retrieveValue(types[i], Location(), true); solAssert(types[i]->getSizeOnStack() == 1, "Returning struct elements with stack size != 1 not yet implemented."); m_context << eth::Instruction::SWAP1; retSizeOnStack += types[i]->getSizeOnStack(); } m_context << eth::Instruction::POP; } else { // simple value solAssert(accessorType.getReturnParameterTypes().size() == 1, ""); m_currentLValue = LValue(m_context, LValue::LValueType::Storage, *returnType); m_currentLValue.retrieveValue(returnType, Location(), true); retSizeOnStack = returnType->getSizeOnStack(); } solAssert(retSizeOnStack <= 15, "Stack too deep."); m_context << eth::dupInstruction(retSizeOnStack + 1) << eth::Instruction::JUMP; } ExpressionCompiler::LValue::LValue(CompilerContext& _compilerContext, LValueType _type, Type const& _dataType, unsigned _baseStackOffset): m_context(&_compilerContext), m_type(_type), m_baseStackOffset(_baseStackOffset) { //@todo change the type cast for arrays solAssert(_dataType.getStorageSize() <= numeric_limits::max(), "The storage size of " +_dataType.toString() + " should fit in unsigned"); if (m_type == LValueType::Storage) m_size = unsigned(_dataType.getStorageSize()); else m_size = unsigned(_dataType.getSizeOnStack()); } void ExpressionCompiler::LValue::retrieveValue(TypePointer const& _type, Location const& _location, bool _remove) const { switch (m_type) { case LValueType::Stack: { unsigned stackPos = m_context->baseToCurrentStackOffset(unsigned(m_baseStackOffset)); if (stackPos >= 15) //@todo correct this by fetching earlier or moving to memory BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_location) << errinfo_comment("Stack too deep.")); for (unsigned i = 0; i < m_size; ++i) *m_context << eth::dupInstruction(stackPos + 1); break; } case LValueType::Storage: retrieveValueFromStorage(_type, _remove); break; case LValueType::Memory: if (!_type->isValueType()) break; // no distinction between value and reference for non-value types BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_location) << errinfo_comment("Location type not yet implemented.")); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_location) << errinfo_comment("Unsupported location type.")); break; } } void ExpressionCompiler::LValue::retrieveValueFromStorage(TypePointer const& _type, bool _remove) const { if (!_type->isValueType()) return; // no distinction between value and reference for non-value types if (!_remove) *m_context << eth::Instruction::DUP1; if (m_size == 1) *m_context << eth::Instruction::SLOAD; else for (unsigned i = 0; i < m_size; ++i) { *m_context << eth::Instruction::DUP1 << eth::Instruction::SLOAD << eth::Instruction::SWAP1; if (i + 1 < m_size) *m_context << u256(1) << eth::Instruction::ADD; else *m_context << eth::Instruction::POP; } } void ExpressionCompiler::LValue::storeValue(Expression const& _expression, Type const& _sourceType, bool _move) const { switch (m_type) { case LValueType::Stack: { unsigned stackDiff = m_context->baseToCurrentStackOffset(unsigned(m_baseStackOffset)) - m_size + 1; if (stackDiff > 16) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Stack too deep.")); else if (stackDiff > 0) for (unsigned i = 0; i < m_size; ++i) *m_context << eth::swapInstruction(stackDiff) << eth::Instruction::POP; if (!_move) retrieveValue(_expression.getType(), _expression.getLocation()); break; } case LValueType::Storage: // stack layout: value value ... value target_ref if (_expression.getType()->isValueType()) { if (!_move) // copy values { if (m_size + 1 > 16) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Stack too deep.")); for (unsigned i = 0; i < m_size; ++i) *m_context << eth::dupInstruction(m_size + 1) << eth::Instruction::SWAP1; } if (m_size > 0) // store high index value first *m_context << u256(m_size - 1) << eth::Instruction::ADD; for (unsigned i = 0; i < m_size; ++i) { if (i + 1 >= m_size) *m_context << eth::Instruction::SSTORE; else // stack here: value value ... value value (target_ref+offset) *m_context << eth::Instruction::SWAP1 << eth::Instruction::DUP2 << eth::Instruction::SSTORE << u256(1) << eth::Instruction::SWAP1 << eth::Instruction::SUB; } } else { solAssert(!_move, "Move assign for non-value types not implemented."); solAssert(_sourceType.getCategory() == _expression.getType()->getCategory(), ""); if (_expression.getType()->getCategory() == Type::Category::ByteArray) CompilerUtils(*m_context).copyByteArrayToStorage( dynamic_cast(*_expression.getType()), dynamic_cast(_sourceType)); else if (_expression.getType()->getCategory() == Type::Category::Struct) { //@todo solAssert(false, "Struct copy not yet implemented."); } else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Invalid non-value type for assignment.")); } break; case LValueType::Memory: if (!_expression.getType()->isValueType()) break; // no distinction between value and reference for non-value types BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Location type not yet implemented.")); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Unsupported location type.")); break; } } void ExpressionCompiler::LValue::setToZero(Expression const& _expression, Type const& _type) const { switch (m_type) { case LValueType::Stack: { unsigned stackDiff = m_context->baseToCurrentStackOffset(unsigned(m_baseStackOffset)); if (stackDiff > 16) BOOST_THROW_EXCEPTION(CompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Stack too deep.")); solAssert(stackDiff >= m_size - 1, ""); for (unsigned i = 0; i < m_size; ++i) *m_context << u256(0) << eth::swapInstruction(stackDiff + 1 - i) << eth::Instruction::POP; break; } case LValueType::Storage: if (_type.getCategory() == Type::Category::ByteArray) CompilerUtils(*m_context).clearByteArray(dynamic_cast(_type)); else { if (m_size == 0) *m_context << eth::Instruction::POP; for (unsigned i = 0; i < m_size; ++i) if (i + 1 >= m_size) *m_context << u256(0) << eth::Instruction::SWAP1 << eth::Instruction::SSTORE; else *m_context << u256(0) << eth::Instruction::DUP2 << eth::Instruction::SSTORE << u256(1) << eth::Instruction::ADD; } break; case LValueType::Memory: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Location type not yet implemented.")); break; default: BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_expression.getLocation()) << errinfo_comment("Unsupported location type.")); break; } } void ExpressionCompiler::LValue::retrieveValueIfLValueNotRequested(Expression const& _expression) { if (!_expression.lvalueRequested()) { retrieveValue(_expression.getType(), _expression.getLocation(), true); reset(); } } void ExpressionCompiler::LValue::fromStateVariable(Declaration const& _varDecl, TypePointer const& _type) { m_type = LValueType::Storage; solAssert(_type->getStorageSize() <= numeric_limits::max(), "The storage size of " + _type->toString() + " should fit in an unsigned"); *m_context << m_context->getStorageLocationOfVariable(_varDecl); m_size = unsigned(_type->getStorageSize()); } void ExpressionCompiler::LValue::fromIdentifier(Identifier const& _identifier, Declaration const& _declaration) { if (m_context->isLocalVariable(&_declaration)) { m_type = LValueType::Stack; m_size = _identifier.getType()->getSizeOnStack(); m_baseStackOffset = m_context->getBaseStackOffsetOfVariable(_declaration); } else if (m_context->isStateVariable(&_declaration)) { fromStateVariable(_declaration, _identifier.getType()); } else BOOST_THROW_EXCEPTION(InternalCompilerError() << errinfo_sourceLocation(_identifier.getLocation()) << errinfo_comment("Identifier type not supported or identifier not found.")); } } }