/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** * @author Christian * @date 2014 * Solidity abstract syntax tree. */ #include #include #include #include #include #include #include using namespace std; namespace dev { namespace solidity { TypeError ASTNode::createTypeError(string const& _description) const { return TypeError() << errinfo_sourceLocation(getLocation()) << errinfo_comment(_description); } TypePointer ContractDefinition::getType(ContractDefinition const* _currentContract) const { return make_shared(make_shared(*this), _currentContract); } void ContractDefinition::checkTypeRequirements() { for (ASTPointer const& baseSpecifier: getBaseContracts()) baseSpecifier->checkTypeRequirements(); checkIllegalOverrides(); FunctionDefinition const* constructor = getConstructor(); if (constructor && !constructor->getReturnParameters().empty()) BOOST_THROW_EXCEPTION(constructor->getReturnParameterList()->createTypeError( "Non-empty \"returns\" directive for constructor.")); FunctionDefinition const* fallbackFunction = nullptr; for (ASTPointer const& function: getDefinedFunctions()) if (function->getName().empty()) { if (fallbackFunction) BOOST_THROW_EXCEPTION(DeclarationError() << errinfo_comment("Only one fallback function is allowed.")); else { fallbackFunction = function.get(); if (!fallbackFunction->getParameters().empty()) BOOST_THROW_EXCEPTION(fallbackFunction->getParameterList().createTypeError("Fallback function cannot take parameters.")); } } for (ASTPointer const& modifier: getFunctionModifiers()) modifier->checkTypeRequirements(); for (ASTPointer const& function: getDefinedFunctions()) function->checkTypeRequirements(); // check for hash collisions in function signatures set> hashes; for (auto const& it: getInterfaceFunctionList()) { FixedHash<4> const& hash = it.first; if (hashes.count(hash)) BOOST_THROW_EXCEPTION(createTypeError( std::string("Function signature hash collision for ") + it.second->getCanonicalSignature())); hashes.insert(hash); } } map, FunctionTypePointer> ContractDefinition::getInterfaceFunctions() const { auto exportedFunctionList = getInterfaceFunctionList(); map, FunctionTypePointer> exportedFunctions; for (auto const& it: exportedFunctionList) exportedFunctions.insert(it); solAssert(exportedFunctionList.size() == exportedFunctions.size(), "Hash collision at Function Definition Hash calculation"); return exportedFunctions; } FunctionDefinition const* ContractDefinition::getConstructor() const { for (ASTPointer const& f: m_definedFunctions) if (f->isConstructor()) return f.get(); return nullptr; } FunctionDefinition const* ContractDefinition::getFallbackFunction() const { for (ContractDefinition const* contract: getLinearizedBaseContracts()) for (ASTPointer const& f: contract->getDefinedFunctions()) if (f->getName().empty()) return f.get(); return nullptr; } void ContractDefinition::checkIllegalOverrides() const { // TODO unify this at a later point. for this we need to put the constness and the access specifier // into the types map functions; map modifiers; // We search from derived to base, so the stored item causes the error. for (ContractDefinition const* contract: getLinearizedBaseContracts()) { for (ASTPointer const& function: contract->getDefinedFunctions()) { if (function->isConstructor()) continue; // constructors can neither be overridden nor override anything string const& name = function->getName(); if (modifiers.count(name)) BOOST_THROW_EXCEPTION(modifiers[name]->createTypeError("Override changes function to modifier.")); FunctionDefinition const*& override = functions[name]; if (!override) override = function.get(); else if (override->getVisibility() != function->getVisibility() || override->isDeclaredConst() != function->isDeclaredConst() || FunctionType(*override) != FunctionType(*function)) BOOST_THROW_EXCEPTION(override->createTypeError("Override changes extended function signature.")); } for (ASTPointer const& modifier: contract->getFunctionModifiers()) { string const& name = modifier->getName(); if (functions.count(name)) BOOST_THROW_EXCEPTION(functions[name]->createTypeError("Override changes modifier to function.")); ModifierDefinition const*& override = modifiers[name]; if (!override) override = modifier.get(); else if (ModifierType(*override) != ModifierType(*modifier)) BOOST_THROW_EXCEPTION(override->createTypeError("Override changes modifier signature.")); } } } std::vector> const& ContractDefinition::getInterfaceEvents() const { if (!m_interfaceEvents) { set eventsSeen; m_interfaceEvents.reset(new std::vector>()); for (ContractDefinition const* contract: getLinearizedBaseContracts()) for (ASTPointer const& e: contract->getEvents()) if (eventsSeen.count(e->getName()) == 0) { eventsSeen.insert(e->getName()); m_interfaceEvents->push_back(e); } } return *m_interfaceEvents; } vector, FunctionTypePointer>> const& ContractDefinition::getInterfaceFunctionList() const { if (!m_interfaceFunctionList) { set functionsSeen; m_interfaceFunctionList.reset(new vector, FunctionTypePointer>>()); for (ContractDefinition const* contract: getLinearizedBaseContracts()) { for (ASTPointer const& f: contract->getDefinedFunctions()) if (f->isPublic() && !f->isConstructor() && !f->getName().empty() && functionsSeen.count(f->getName()) == 0) { functionsSeen.insert(f->getName()); FixedHash<4> hash(dev::sha3(f->getCanonicalSignature())); m_interfaceFunctionList->push_back(make_pair(hash, make_shared(*f, false))); } for (ASTPointer const& v: contract->getStateVariables()) if (v->isPublic() && functionsSeen.count(v->getName()) == 0) { FunctionType ftype(*v); functionsSeen.insert(v->getName()); FixedHash<4> hash(dev::sha3(ftype.getCanonicalSignature(v->getName()))); m_interfaceFunctionList->push_back(make_pair(hash, make_shared(*v))); } } } return *m_interfaceFunctionList; } void InheritanceSpecifier::checkTypeRequirements() { m_baseName->checkTypeRequirements(); for (ASTPointer const& argument: m_arguments) argument->checkTypeRequirements(); ContractDefinition const* base = dynamic_cast(m_baseName->getReferencedDeclaration()); solAssert(base, "Base contract not available."); TypePointers parameterTypes = ContractType(*base).getConstructorType()->getParameterTypes(); if (parameterTypes.size() != m_arguments.size()) BOOST_THROW_EXCEPTION(createTypeError("Wrong argument count for constructor call.")); for (size_t i = 0; i < m_arguments.size(); ++i) if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameterTypes[i])) BOOST_THROW_EXCEPTION(createTypeError("Invalid type for argument in constructer call.")); } TypePointer StructDefinition::getType(ContractDefinition const*) const { return make_shared(make_shared(*this)); } void StructDefinition::checkMemberTypes() const { for (ASTPointer const& member: getMembers()) if (!member->getType()->canBeStored()) BOOST_THROW_EXCEPTION(member->createTypeError("Type cannot be used in struct.")); } void StructDefinition::checkRecursion() const { set definitionsSeen; vector queue = {this}; while (!queue.empty()) { StructDefinition const* def = queue.back(); queue.pop_back(); if (definitionsSeen.count(def)) BOOST_THROW_EXCEPTION(ParserError() << errinfo_sourceLocation(def->getLocation()) << errinfo_comment("Recursive struct definition.")); definitionsSeen.insert(def); for (ASTPointer const& member: def->getMembers()) if (member->getType()->getCategory() == Type::Category::Struct) { UserDefinedTypeName const& typeName = dynamic_cast(*member->getTypeName()); queue.push_back(&dynamic_cast(*typeName.getReferencedDeclaration())); } } } TypePointer FunctionDefinition::getType(ContractDefinition const*) const { return make_shared(*this); } void FunctionDefinition::checkTypeRequirements() { for (ASTPointer const& var: getParameters() + getReturnParameters()) if (!var->getType()->canLiveOutsideStorage()) BOOST_THROW_EXCEPTION(var->createTypeError("Type is required to live outside storage.")); for (ASTPointer const& modifier: m_functionModifiers) modifier->checkTypeRequirements(); m_body->checkTypeRequirements(); } string FunctionDefinition::getCanonicalSignature() const { return FunctionType(*this).getCanonicalSignature(getName()); } Declaration::LValueType VariableDeclaration::getLValueType() const { if (dynamic_cast(getScope()) || dynamic_cast(getScope())) return Declaration::LValueType::Local; else return Declaration::LValueType::Storage; } TypePointer ModifierDefinition::getType(ContractDefinition const*) const { return make_shared(*this); } void ModifierDefinition::checkTypeRequirements() { m_body->checkTypeRequirements(); } void ModifierInvocation::checkTypeRequirements() { m_modifierName->checkTypeRequirements(); for (ASTPointer const& argument: m_arguments) argument->checkTypeRequirements(); ModifierDefinition const* modifier = dynamic_cast(m_modifierName->getReferencedDeclaration()); solAssert(modifier, "Function modifier not found."); vector> const& parameters = modifier->getParameters(); if (parameters.size() != m_arguments.size()) BOOST_THROW_EXCEPTION(createTypeError("Wrong argument count for modifier invocation.")); for (size_t i = 0; i < m_arguments.size(); ++i) if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameters[i]->getType())) BOOST_THROW_EXCEPTION(createTypeError("Invalid type for argument in modifier invocation.")); } void EventDefinition::checkTypeRequirements() { int numIndexed = 0; for (ASTPointer const& var: getParameters()) { if (var->isIndexed()) numIndexed++; if (!var->getType()->canLiveOutsideStorage()) BOOST_THROW_EXCEPTION(var->createTypeError("Type is required to live outside storage.")); } if (numIndexed > 3) BOOST_THROW_EXCEPTION(createTypeError("More than 3 indexed arguments for event.")); } void Block::checkTypeRequirements() { for (shared_ptr const& statement: m_statements) statement->checkTypeRequirements(); } void IfStatement::checkTypeRequirements() { m_condition->expectType(BoolType()); m_trueBody->checkTypeRequirements(); if (m_falseBody) m_falseBody->checkTypeRequirements(); } void WhileStatement::checkTypeRequirements() { m_condition->expectType(BoolType()); m_body->checkTypeRequirements(); } void ForStatement::checkTypeRequirements() { if (m_initExpression) m_initExpression->checkTypeRequirements(); if (m_condExpression) m_condExpression->expectType(BoolType()); if (m_loopExpression) m_loopExpression->checkTypeRequirements(); m_body->checkTypeRequirements(); } void Return::checkTypeRequirements() { if (!m_expression) return; if (!m_returnParameters) BOOST_THROW_EXCEPTION(createTypeError("Return arguments not allowed.")); if (m_returnParameters->getParameters().size() != 1) BOOST_THROW_EXCEPTION(createTypeError("Different number of arguments in return statement " "than in returns declaration.")); // this could later be changed such that the paramaters type is an anonymous struct type, // but for now, we only allow one return parameter m_expression->expectType(*m_returnParameters->getParameters().front()->getType()); } void VariableDefinition::checkTypeRequirements() { // Variables can be declared without type (with "var"), in which case the first assignment // sets the type. // Note that assignments before the first declaration are legal because of the special scoping // rules inherited from JavaScript. if (m_value) { if (m_variable->getType()) m_value->expectType(*m_variable->getType()); else { // no type declared and no previous assignment, infer the type m_value->checkTypeRequirements(); TypePointer type = m_value->getType(); if (type->getCategory() == Type::Category::IntegerConstant) { auto intType = dynamic_pointer_cast(type)->getIntegerType(); if (!intType) BOOST_THROW_EXCEPTION(m_value->createTypeError("Invalid integer constant " + type->toString())); type = intType; } else if (type->getCategory() == Type::Category::Void) BOOST_THROW_EXCEPTION(m_variable->createTypeError("var cannot be void type")); m_variable->setType(type); } } } void Assignment::checkTypeRequirements() { m_leftHandSide->checkTypeRequirements(); m_leftHandSide->requireLValue(); //@todo later, assignments to structs might be possible, but not to mappings if (m_leftHandSide->getType()->getCategory() != Type::Category::ByteArray && !m_leftHandSide->getType()->isValueType() && !m_leftHandSide->isLocalLValue()) BOOST_THROW_EXCEPTION(createTypeError("Assignment to non-local non-value lvalue.")); m_type = m_leftHandSide->getType(); if (m_assigmentOperator == Token::Assign) m_rightHandSide->expectType(*m_type); else { // compound assignment m_rightHandSide->checkTypeRequirements(); TypePointer resultType = m_type->binaryOperatorResult(Token::AssignmentToBinaryOp(m_assigmentOperator), m_rightHandSide->getType()); if (!resultType || *resultType != *m_type) BOOST_THROW_EXCEPTION(createTypeError("Operator " + string(Token::toString(m_assigmentOperator)) + " not compatible with types " + m_type->toString() + " and " + m_rightHandSide->getType()->toString())); } } void ExpressionStatement::checkTypeRequirements() { m_expression->checkTypeRequirements(); if (m_expression->getType()->getCategory() == Type::Category::IntegerConstant) if (!dynamic_pointer_cast(m_expression->getType())->getIntegerType()) BOOST_THROW_EXCEPTION(m_expression->createTypeError("Invalid integer constant.")); } void Expression::expectType(Type const& _expectedType) { checkTypeRequirements(); Type const& type = *getType(); if (!type.isImplicitlyConvertibleTo(_expectedType)) BOOST_THROW_EXCEPTION(createTypeError("Type " + type.toString() + " not implicitly convertible to expected type " + _expectedType.toString() + ".")); } void Expression::requireLValue() { if (!isLValue()) BOOST_THROW_EXCEPTION(createTypeError("Expression has to be an lvalue.")); m_lvalueRequested = true; } void UnaryOperation::checkTypeRequirements() { // Inc, Dec, Add, Sub, Not, BitNot, Delete m_subExpression->checkTypeRequirements(); if (m_operator == Token::Value::Inc || m_operator == Token::Value::Dec || m_operator == Token::Value::Delete) m_subExpression->requireLValue(); m_type = m_subExpression->getType()->unaryOperatorResult(m_operator); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Unary operator not compatible with type.")); } void BinaryOperation::checkTypeRequirements() { m_left->checkTypeRequirements(); m_right->checkTypeRequirements(); m_commonType = m_left->getType()->binaryOperatorResult(m_operator, m_right->getType()); if (!m_commonType) BOOST_THROW_EXCEPTION(createTypeError("Operator " + string(Token::toString(m_operator)) + " not compatible with types " + m_left->getType()->toString() + " and " + m_right->getType()->toString())); m_type = Token::isCompareOp(m_operator) ? make_shared() : m_commonType; } void FunctionCall::checkTypeRequirements() { m_expression->checkTypeRequirements(); for (ASTPointer const& argument: m_arguments) argument->checkTypeRequirements(); Type const* expressionType = m_expression->getType().get(); if (isTypeConversion()) { TypeType const& type = dynamic_cast(*expressionType); //@todo for structs, we have to check the number of arguments to be equal to the // number of non-mapping members if (m_arguments.size() != 1) BOOST_THROW_EXCEPTION(createTypeError("More than one argument for explicit type conversion.")); if (!m_names.empty()) BOOST_THROW_EXCEPTION(createTypeError("Type conversion cannot allow named arguments.")); if (!m_arguments.front()->getType()->isExplicitlyConvertibleTo(*type.getActualType())) BOOST_THROW_EXCEPTION(createTypeError("Explicit type conversion not allowed.")); m_type = type.getActualType(); } else if (FunctionType const* functionType = dynamic_cast(expressionType)) { //@todo would be nice to create a struct type from the arguments // and then ask if that is implicitly convertible to the struct represented by the // function parameters TypePointers const& parameterTypes = functionType->getParameterTypes(); if (!functionType->takesArbitraryParameters() && parameterTypes.size() != m_arguments.size()) BOOST_THROW_EXCEPTION(createTypeError("Wrong argument count for function call.")); if (m_names.empty()) { for (size_t i = 0; i < m_arguments.size(); ++i) if (!functionType->takesArbitraryParameters() && !m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameterTypes[i])) BOOST_THROW_EXCEPTION(m_arguments[i]->createTypeError("Invalid type for argument in function call.")); } else { if (functionType->takesArbitraryParameters()) BOOST_THROW_EXCEPTION(createTypeError("Named arguments cannnot be used for functions " "that take arbitrary parameters.")); auto const& parameterNames = functionType->getParameterNames(); if (parameterNames.size() != m_names.size()) BOOST_THROW_EXCEPTION(createTypeError("Some argument names are missing.")); // check duplicate names for (size_t i = 0; i < m_names.size(); i++) for (size_t j = i + 1; j < m_names.size(); j++) if (*m_names[i] == *m_names[j]) BOOST_THROW_EXCEPTION(m_arguments[i]->createTypeError("Duplicate named argument.")); for (size_t i = 0; i < m_names.size(); i++) { bool found = false; for (size_t j = 0; j < parameterNames.size(); j++) { if (parameterNames[j] == *m_names[i]) { // check type convertible if (!m_arguments[i]->getType()->isImplicitlyConvertibleTo(*parameterTypes[j])) BOOST_THROW_EXCEPTION(createTypeError("Invalid type for argument in function call.")); found = true; break; } } if (!found) BOOST_THROW_EXCEPTION(createTypeError("Named argument does not match function declaration.")); } } // @todo actually the return type should be an anonymous struct, // but we change it to the type of the first return value until we have structs if (functionType->getReturnParameterTypes().empty()) m_type = make_shared(); else m_type = functionType->getReturnParameterTypes().front(); } else BOOST_THROW_EXCEPTION(createTypeError("Type is not callable.")); } bool FunctionCall::isTypeConversion() const { return m_expression->getType()->getCategory() == Type::Category::TypeType; } void NewExpression::checkTypeRequirements() { m_contractName->checkTypeRequirements(); m_contract = dynamic_cast(m_contractName->getReferencedDeclaration()); if (!m_contract) BOOST_THROW_EXCEPTION(createTypeError("Identifier is not a contract.")); shared_ptr contractType = make_shared(*m_contract); TypePointers const& parameterTypes = contractType->getConstructorType()->getParameterTypes(); m_type = make_shared(parameterTypes, TypePointers{contractType}, FunctionType::Location::Creation); } void MemberAccess::checkTypeRequirements() { m_expression->checkTypeRequirements(); Type const& type = *m_expression->getType(); m_type = type.getMemberType(*m_memberName); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Member \"" + *m_memberName + "\" not found or not " "visible in " + type.toString())); //@todo later, this will not always be STORAGE m_lvalue = type.getCategory() == Type::Category::Struct ? Declaration::LValueType::Storage : Declaration::LValueType::None; } void IndexAccess::checkTypeRequirements() { m_base->checkTypeRequirements(); if (m_base->getType()->getCategory() != Type::Category::Mapping) BOOST_THROW_EXCEPTION(m_base->createTypeError("Indexed expression has to be a mapping (is " + m_base->getType()->toString() + ")")); MappingType const& type = dynamic_cast(*m_base->getType()); m_index->expectType(*type.getKeyType()); m_type = type.getValueType(); m_lvalue = Declaration::LValueType::Storage; } void Identifier::checkTypeRequirements() { solAssert(m_referencedDeclaration, "Identifier not resolved."); m_lvalue = m_referencedDeclaration->getLValueType(); m_type = m_referencedDeclaration->getType(m_currentContract); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Declaration referenced before type could be determined.")); } void ElementaryTypeNameExpression::checkTypeRequirements() { m_type = make_shared(Type::fromElementaryTypeName(m_typeToken)); } void Literal::checkTypeRequirements() { m_type = Type::forLiteral(*this); if (!m_type) BOOST_THROW_EXCEPTION(createTypeError("Invalid literal value.")); } } }