#include "Arith256.h" #include "Runtime.h" #include "Type.h" #include namespace dev { namespace eth { namespace jit { Arith256::Arith256(llvm::IRBuilder<>& _builder) : CompilerHelper(_builder) { using namespace llvm; m_result = m_builder.CreateAlloca(Type::Word, nullptr, "arith.result"); m_arg1 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg1"); m_arg2 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg2"); m_arg3 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg3"); using Linkage = GlobalValue::LinkageTypes; llvm::Type* arg2Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr}; llvm::Type* arg3Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr, Type::WordPtr}; m_mul = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mul", getModule()); m_div = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_div", getModule()); m_mod = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mod", getModule()); m_sdiv = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_sdiv", getModule()); m_smod = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_smod", getModule()); m_exp = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_exp", getModule()); m_addmod = Function::Create(FunctionType::get(Type::Void, arg3Types, false), Linkage::ExternalLinkage, "arith_addmod", getModule()); m_mulmod = Function::Create(FunctionType::get(Type::Void, arg3Types, false), Linkage::ExternalLinkage, "arith_mulmod", getModule()); } Arith256::~Arith256() {} llvm::Value* Arith256::binaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2) { m_builder.CreateStore(_arg1, m_arg1); m_builder.CreateStore(_arg2, m_arg2); m_builder.CreateCall3(_op, m_arg1, m_arg2, m_result); return m_builder.CreateLoad(m_result); } llvm::Value* Arith256::ternaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3) { m_builder.CreateStore(_arg1, m_arg1); m_builder.CreateStore(_arg2, m_arg2); m_builder.CreateStore(_arg3, m_arg3); m_builder.CreateCall4(_op, m_arg1, m_arg2, m_arg3, m_result); return m_builder.CreateLoad(m_result); } llvm::Value* Arith256::mul(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_mul, _arg1, _arg2); } llvm::Value* Arith256::div(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_div, _arg1, _arg2); } llvm::Value* Arith256::mod(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_mod, _arg1, _arg2); } llvm::Value* Arith256::sdiv(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_sdiv, _arg1, _arg2); } llvm::Value* Arith256::smod(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_smod, _arg1, _arg2); } llvm::Value* Arith256::exp(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_exp, _arg1, _arg2); } llvm::Value* Arith256::addmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3) { return ternaryOp(m_addmod, _arg1, _arg2, _arg3); } llvm::Value* Arith256::mulmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3) { return ternaryOp(m_mulmod, _arg1, _arg2, _arg3); } namespace { using s256 = boost::multiprecision::int256_t; inline s256 u2s(u256 _u) { static const bigint c_end = (bigint)1 << 256; static const u256 c_send = (u256)1 << 255; if (_u < c_send) return (s256)_u; else return (s256)-(c_end - _u); } inline u256 s2u(s256 _u) { static const bigint c_end = (bigint)1 << 256; if (_u >= 0) return (u256)_u; else return (u256)(c_end + _u); } } } } } extern "C" { using namespace dev::eth::jit; EXPORT void arith_mul(i256* _arg1, i256* _arg2, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); *o_result = eth2llvm(arg1 * arg2); } EXPORT void arith_div(i256* _arg1, i256* _arg2, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); *o_result = eth2llvm(arg2 == 0 ? arg2 : arg1 / arg2); } EXPORT void arith_mod(i256* _arg1, i256* _arg2, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); *o_result = eth2llvm(arg2 == 0 ? arg2 : arg1 % arg2); } EXPORT void arith_sdiv(i256* _arg1, i256* _arg2, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); *o_result = eth2llvm(arg2 == 0 ? arg2 : s2u(u2s(arg1) / u2s(arg2))); } EXPORT void arith_smod(i256* _arg1, i256* _arg2, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); *o_result = eth2llvm(arg2 == 0 ? arg2 : s2u(u2s(arg1) % u2s(arg2))); } EXPORT void arith_exp(i256* _arg1, i256* _arg2, i256* o_result) { bigint left = llvm2eth(*_arg1); bigint right = llvm2eth(*_arg2); auto ret = static_cast(boost::multiprecision::powm(left, right, bigint(2) << 256)); *o_result = eth2llvm(ret); } EXPORT void arith_mulmod(i256* _arg1, i256* _arg2, i256* _arg3, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); auto arg3 = llvm2eth(*_arg3); if (arg3 != 0) *o_result = eth2llvm(u256((bigint(arg1) * bigint(arg2)) % arg3)); else *o_result = {}; } EXPORT void arith_addmod(i256* _arg1, i256* _arg2, i256* _arg3, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); auto arg3 = llvm2eth(*_arg3); if (arg3 != 0) *o_result = eth2llvm(u256((bigint(arg1) + bigint(arg2)) % arg3)); else *o_result = {}; } }