// author Tim Hughes // Tested on Radeon HD 7850 // Hashrate: 15940347 hashes/s // Bandwidth: 124533 MB/s // search kernel should fit in <= 84 VGPRS (3 wavefronts) #define THREADS_PER_HASH (128 / 16) #define HASHES_PER_LOOP (GROUP_SIZE / THREADS_PER_HASH) #define FNV_PRIME 0x01000193 __constant uint2 const Keccak_f1600_RC[24] = { (uint2)(0x00000001, 0x00000000), (uint2)(0x00008082, 0x00000000), (uint2)(0x0000808a, 0x80000000), (uint2)(0x80008000, 0x80000000), (uint2)(0x0000808b, 0x00000000), (uint2)(0x80000001, 0x00000000), (uint2)(0x80008081, 0x80000000), (uint2)(0x00008009, 0x80000000), (uint2)(0x0000008a, 0x00000000), (uint2)(0x00000088, 0x00000000), (uint2)(0x80008009, 0x00000000), (uint2)(0x8000000a, 0x00000000), (uint2)(0x8000808b, 0x00000000), (uint2)(0x0000008b, 0x80000000), (uint2)(0x00008089, 0x80000000), (uint2)(0x00008003, 0x80000000), (uint2)(0x00008002, 0x80000000), (uint2)(0x00000080, 0x80000000), (uint2)(0x0000800a, 0x00000000), (uint2)(0x8000000a, 0x80000000), (uint2)(0x80008081, 0x80000000), (uint2)(0x00008080, 0x80000000), (uint2)(0x80000001, 0x00000000), (uint2)(0x80008008, 0x80000000), }; static void keccak_f1600_round(uint2* a, uint r, uint out_size) { #if !__ENDIAN_LITTLE__ for (uint i = 0; i != 25; ++i) a[i] = a[i].yx; #endif uint2 b[25]; uint2 t; // Theta b[0] = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20]; b[1] = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21]; b[2] = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22]; b[3] = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23]; b[4] = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24]; t = b[4] ^ (uint2)(b[1].x << 1 | b[1].y >> 31, b[1].y << 1 | b[1].x >> 31); a[0] ^= t; a[5] ^= t; a[10] ^= t; a[15] ^= t; a[20] ^= t; t = b[0] ^ (uint2)(b[2].x << 1 | b[2].y >> 31, b[2].y << 1 | b[2].x >> 31); a[1] ^= t; a[6] ^= t; a[11] ^= t; a[16] ^= t; a[21] ^= t; t = b[1] ^ (uint2)(b[3].x << 1 | b[3].y >> 31, b[3].y << 1 | b[3].x >> 31); a[2] ^= t; a[7] ^= t; a[12] ^= t; a[17] ^= t; a[22] ^= t; t = b[2] ^ (uint2)(b[4].x << 1 | b[4].y >> 31, b[4].y << 1 | b[4].x >> 31); a[3] ^= t; a[8] ^= t; a[13] ^= t; a[18] ^= t; a[23] ^= t; t = b[3] ^ (uint2)(b[0].x << 1 | b[0].y >> 31, b[0].y << 1 | b[0].x >> 31); a[4] ^= t; a[9] ^= t; a[14] ^= t; a[19] ^= t; a[24] ^= t; // Rho Pi b[0] = a[0]; b[10] = (uint2)(a[1].x << 1 | a[1].y >> 31, a[1].y << 1 | a[1].x >> 31); b[7] = (uint2)(a[10].x << 3 | a[10].y >> 29, a[10].y << 3 | a[10].x >> 29); b[11] = (uint2)(a[7].x << 6 | a[7].y >> 26, a[7].y << 6 | a[7].x >> 26); b[17] = (uint2)(a[11].x << 10 | a[11].y >> 22, a[11].y << 10 | a[11].x >> 22); b[18] = (uint2)(a[17].x << 15 | a[17].y >> 17, a[17].y << 15 | a[17].x >> 17); b[3] = (uint2)(a[18].x << 21 | a[18].y >> 11, a[18].y << 21 | a[18].x >> 11); b[5] = (uint2)(a[3].x << 28 | a[3].y >> 4, a[3].y << 28 | a[3].x >> 4); b[16] = (uint2)(a[5].y << 4 | a[5].x >> 28, a[5].x << 4 | a[5].y >> 28); b[8] = (uint2)(a[16].y << 13 | a[16].x >> 19, a[16].x << 13 | a[16].y >> 19); b[21] = (uint2)(a[8].y << 23 | a[8].x >> 9, a[8].x << 23 | a[8].y >> 9); b[24] = (uint2)(a[21].x << 2 | a[21].y >> 30, a[21].y << 2 | a[21].x >> 30); b[4] = (uint2)(a[24].x << 14 | a[24].y >> 18, a[24].y << 14 | a[24].x >> 18); b[15] = (uint2)(a[4].x << 27 | a[4].y >> 5, a[4].y << 27 | a[4].x >> 5); b[23] = (uint2)(a[15].y << 9 | a[15].x >> 23, a[15].x << 9 | a[15].y >> 23); b[19] = (uint2)(a[23].y << 24 | a[23].x >> 8, a[23].x << 24 | a[23].y >> 8); b[13] = (uint2)(a[19].x << 8 | a[19].y >> 24, a[19].y << 8 | a[19].x >> 24); b[12] = (uint2)(a[13].x << 25 | a[13].y >> 7, a[13].y << 25 | a[13].x >> 7); b[2] = (uint2)(a[12].y << 11 | a[12].x >> 21, a[12].x << 11 | a[12].y >> 21); b[20] = (uint2)(a[2].y << 30 | a[2].x >> 2, a[2].x << 30 | a[2].y >> 2); b[14] = (uint2)(a[20].x << 18 | a[20].y >> 14, a[20].y << 18 | a[20].x >> 14); b[22] = (uint2)(a[14].y << 7 | a[14].x >> 25, a[14].x << 7 | a[14].y >> 25); b[9] = (uint2)(a[22].y << 29 | a[22].x >> 3, a[22].x << 29 | a[22].y >> 3); b[6] = (uint2)(a[9].x << 20 | a[9].y >> 12, a[9].y << 20 | a[9].x >> 12); b[1] = (uint2)(a[6].y << 12 | a[6].x >> 20, a[6].x << 12 | a[6].y >> 20); // Chi a[0] = bitselect(b[0] ^ b[2], b[0], b[1]); a[1] = bitselect(b[1] ^ b[3], b[1], b[2]); a[2] = bitselect(b[2] ^ b[4], b[2], b[3]); a[3] = bitselect(b[3] ^ b[0], b[3], b[4]); if (out_size >= 4) { a[4] = bitselect(b[4] ^ b[1], b[4], b[0]); a[5] = bitselect(b[5] ^ b[7], b[5], b[6]); a[6] = bitselect(b[6] ^ b[8], b[6], b[7]); a[7] = bitselect(b[7] ^ b[9], b[7], b[8]); a[8] = bitselect(b[8] ^ b[5], b[8], b[9]); if (out_size >= 8) { a[9] = bitselect(b[9] ^ b[6], b[9], b[5]); a[10] = bitselect(b[10] ^ b[12], b[10], b[11]); a[11] = bitselect(b[11] ^ b[13], b[11], b[12]); a[12] = bitselect(b[12] ^ b[14], b[12], b[13]); a[13] = bitselect(b[13] ^ b[10], b[13], b[14]); a[14] = bitselect(b[14] ^ b[11], b[14], b[10]); a[15] = bitselect(b[15] ^ b[17], b[15], b[16]); a[16] = bitselect(b[16] ^ b[18], b[16], b[17]); a[17] = bitselect(b[17] ^ b[19], b[17], b[18]); a[18] = bitselect(b[18] ^ b[15], b[18], b[19]); a[19] = bitselect(b[19] ^ b[16], b[19], b[15]); a[20] = bitselect(b[20] ^ b[22], b[20], b[21]); a[21] = bitselect(b[21] ^ b[23], b[21], b[22]); a[22] = bitselect(b[22] ^ b[24], b[22], b[23]); a[23] = bitselect(b[23] ^ b[20], b[23], b[24]); a[24] = bitselect(b[24] ^ b[21], b[24], b[20]); } } // Iota a[0] ^= Keccak_f1600_RC[r]; #if !__ENDIAN_LITTLE__ for (uint i = 0; i != 25; ++i) a[i] = a[i].yx; #endif } static void keccak_f1600_no_absorb(ulong* a, uint in_size, uint out_size, uint isolate) { for (uint i = in_size; i != 25; ++i) { a[i] = 0; } #if __ENDIAN_LITTLE__ a[in_size] ^= 0x0000000000000001; a[24-out_size*2] ^= 0x8000000000000000; #else a[in_size] ^= 0x0100000000000000; a[24-out_size*2] ^= 0x0000000000000080; #endif // Originally I unrolled the first and last rounds to interface // better with surrounding code, however I haven't done this // without causing the AMD compiler to blow up the VGPR usage. uint r = 0; do { // This dynamic branch stops the AMD compiler unrolling the loop // and additionally saves about 33% of the VGPRs, enough to gain another // wavefront. Ideally we'd get 4 in flight, but 3 is the best I can // massage out of the compiler. It doesn't really seem to matter how // much we try and help the compiler save VGPRs because it seems to throw // that information away, hence the implementation of keccak here // doesn't bother. if (isolate) { keccak_f1600_round((uint2*)a, r++, 25); } } while (r < 23); // final round optimised for digest size keccak_f1600_round((uint2*)a, r++, out_size); } #define copy(dst, src, count) for (uint i = 0; i != count; ++i) { (dst)[i] = (src)[i]; } #define countof(x) (sizeof(x) / sizeof(x[0])) static uint fnv(uint x, uint y) { return x * FNV_PRIME ^ y; } static uint4 fnv4(uint4 x, uint4 y) { return x * FNV_PRIME ^ y; } static uint fnv_reduce(uint4 v) { return fnv(fnv(fnv(v.x, v.y), v.z), v.w); } typedef union { ulong ulongs[32 / sizeof(ulong)]; uint uints[32 / sizeof(uint)]; } hash32_t; typedef union { ulong ulongs[64 / sizeof(ulong)]; uint4 uint4s[64 / sizeof(uint4)]; } hash64_t; typedef union { uint uints[128 / sizeof(uint)]; uint4 uint4s[128 / sizeof(uint4)]; } hash128_t; static hash64_t init_hash(__constant hash32_t const* header, ulong nonce, uint isolate) { hash64_t init; uint const init_size = countof(init.ulongs); uint const hash_size = countof(header->ulongs); // sha3_512(header .. nonce) ulong state[25]; copy(state, header->ulongs, hash_size); state[hash_size] = nonce; keccak_f1600_no_absorb(state, hash_size + 1, init_size, isolate); copy(init.ulongs, state, init_size); return init; } static uint inner_loop_chunks(uint4 init, uint thread_id, __local uint* share, __global hash128_t const* g_dag, __global hash128_t const* g_dag1, __global hash128_t const* g_dag2, __global hash128_t const* g_dag3, uint isolate) { uint4 mix = init; // share init0 if (thread_id == 0) *share = mix.x; barrier(CLK_LOCAL_MEM_FENCE); uint init0 = *share; uint a = 0; do { bool update_share = thread_id == (a/4) % THREADS_PER_HASH; #pragma unroll for (uint i = 0; i != 4; ++i) { if (update_share) { uint m[4] = { mix.x, mix.y, mix.z, mix.w }; *share = fnv(init0 ^ (a+i), m[i]) % DAG_SIZE; } barrier(CLK_LOCAL_MEM_FENCE); mix = fnv4(mix, *share>=3 * DAG_SIZE / 4 ? g_dag3[*share - 3 * DAG_SIZE / 4].uint4s[thread_id] : *share>=DAG_SIZE / 2 ? g_dag2[*share - DAG_SIZE / 2].uint4s[thread_id] : *share>=DAG_SIZE / 4 ? g_dag1[*share - DAG_SIZE / 4].uint4s[thread_id]:g_dag[*share].uint4s[thread_id]); } } while ((a += 4) != (ACCESSES & isolate)); return fnv_reduce(mix); } static uint inner_loop(uint4 init, uint thread_id, __local uint* share, __global hash128_t const* g_dag, uint isolate) { uint4 mix = init; // share init0 if (thread_id == 0) *share = mix.x; barrier(CLK_LOCAL_MEM_FENCE); uint init0 = *share; uint a = 0; do { bool update_share = thread_id == (a/4) % THREADS_PER_HASH; #pragma unroll for (uint i = 0; i != 4; ++i) { if (update_share) { uint m[4] = { mix.x, mix.y, mix.z, mix.w }; *share = fnv(init0 ^ (a+i), m[i]) % DAG_SIZE; } barrier(CLK_LOCAL_MEM_FENCE); mix = fnv4(mix, g_dag[*share].uint4s[thread_id]); } } while ((a += 4) != (ACCESSES & isolate)); return fnv_reduce(mix); } static hash32_t final_hash(hash64_t const* init, hash32_t const* mix, uint isolate) { ulong state[25]; hash32_t hash; uint const hash_size = countof(hash.ulongs); uint const init_size = countof(init->ulongs); uint const mix_size = countof(mix->ulongs); // keccak_256(keccak_512(header..nonce) .. mix); copy(state, init->ulongs, init_size); copy(state + init_size, mix->ulongs, mix_size); keccak_f1600_no_absorb(state, init_size+mix_size, hash_size, isolate); // copy out copy(hash.ulongs, state, hash_size); return hash; } static hash32_t compute_hash_simple( __constant hash32_t const* g_header, __global hash128_t const* g_dag, ulong nonce, uint isolate ) { hash64_t init = init_hash(g_header, nonce, isolate); hash128_t mix; for (uint i = 0; i != countof(mix.uint4s); ++i) { mix.uint4s[i] = init.uint4s[i % countof(init.uint4s)]; } uint mix_val = mix.uints[0]; uint init0 = mix.uints[0]; uint a = 0; do { uint pi = fnv(init0 ^ a, mix_val) % DAG_SIZE; uint n = (a+1) % countof(mix.uints); #pragma unroll for (uint i = 0; i != countof(mix.uints); ++i) { mix.uints[i] = fnv(mix.uints[i], g_dag[pi].uints[i]); mix_val = i == n ? mix.uints[i] : mix_val; } } while (++a != (ACCESSES & isolate)); // reduce to output hash32_t fnv_mix; for (uint i = 0; i != countof(fnv_mix.uints); ++i) { fnv_mix.uints[i] = fnv_reduce(mix.uint4s[i]); } return final_hash(&init, &fnv_mix, isolate); } typedef union { struct { hash64_t init; uint pad; // avoid lds bank conflicts }; hash32_t mix; } compute_hash_share; static hash32_t compute_hash( __local compute_hash_share* share, __constant hash32_t const* g_header, __global hash128_t const* g_dag, ulong nonce, uint isolate ) { uint const gid = get_global_id(0); // Compute one init hash per work item. hash64_t init = init_hash(g_header, nonce, isolate); // Threads work together in this phase in groups of 8. uint const thread_id = gid % THREADS_PER_HASH; uint const hash_id = (gid % GROUP_SIZE) / THREADS_PER_HASH; hash32_t mix; uint i = 0; do { // share init with other threads if (i == thread_id) share[hash_id].init = init; barrier(CLK_LOCAL_MEM_FENCE); uint4 thread_init = share[hash_id].init.uint4s[thread_id % (64 / sizeof(uint4))]; barrier(CLK_LOCAL_MEM_FENCE); uint thread_mix = inner_loop(thread_init, thread_id, share[hash_id].mix.uints, g_dag, isolate); share[hash_id].mix.uints[thread_id] = thread_mix; barrier(CLK_LOCAL_MEM_FENCE); if (i == thread_id) mix = share[hash_id].mix; barrier(CLK_LOCAL_MEM_FENCE); } while (++i != (THREADS_PER_HASH & isolate)); return final_hash(&init, &mix, isolate); } static hash32_t compute_hash_chunks( __local compute_hash_share* share, __constant hash32_t const* g_header, __global hash128_t const* g_dag, __global hash128_t const* g_dag1, __global hash128_t const* g_dag2, __global hash128_t const* g_dag3, ulong nonce, uint isolate ) { uint const gid = get_global_id(0); // Compute one init hash per work item. hash64_t init = init_hash(g_header, nonce, isolate); // Threads work together in this phase in groups of 8. uint const thread_id = gid % THREADS_PER_HASH; uint const hash_id = (gid % GROUP_SIZE) / THREADS_PER_HASH; hash32_t mix; uint i = 0; do { // share init with other threads if (i == thread_id) share[hash_id].init = init; barrier(CLK_LOCAL_MEM_FENCE); uint4 thread_init = share[hash_id].init.uint4s[thread_id % (64 / sizeof(uint4))]; barrier(CLK_LOCAL_MEM_FENCE); uint thread_mix = inner_loop_chunks(thread_init, thread_id, share[hash_id].mix.uints, g_dag, g_dag1, g_dag2, g_dag3, isolate); share[hash_id].mix.uints[thread_id] = thread_mix; barrier(CLK_LOCAL_MEM_FENCE); if (i == thread_id) mix = share[hash_id].mix; barrier(CLK_LOCAL_MEM_FENCE); } while (++i != (THREADS_PER_HASH & isolate)); return final_hash(&init, &mix, isolate); } __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) __kernel void ethash_hash_simple( __global hash32_t* g_hashes, __constant hash32_t const* g_header, __global hash128_t const* g_dag, ulong start_nonce, uint isolate ) { uint const gid = get_global_id(0); g_hashes[gid] = compute_hash_simple(g_header, g_dag, start_nonce + gid, isolate); } __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) __kernel void ethash_search_simple( __global volatile uint* restrict g_output, __constant hash32_t const* g_header, __global hash128_t const* g_dag, ulong start_nonce, ulong target, uint isolate ) { uint const gid = get_global_id(0); hash32_t hash = compute_hash_simple(g_header, g_dag, start_nonce + gid, isolate); if (hash.ulongs[countof(hash.ulongs)-1] < target) { uint slot = min(convert_uint(MAX_OUTPUTS), convert_uint(atomic_inc(&g_output[0]) + 1)); g_output[slot] = gid; } } __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) __kernel void ethash_hash( __global hash32_t* g_hashes, __constant hash32_t const* g_header, __global hash128_t const* g_dag, ulong start_nonce, uint isolate ) { __local compute_hash_share share[HASHES_PER_LOOP]; uint const gid = get_global_id(0); g_hashes[gid] = compute_hash(share, g_header, g_dag, start_nonce + gid, isolate); } __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) __kernel void ethash_search( __global volatile uint* restrict g_output, __constant hash32_t const* g_header, __global hash128_t const* g_dag, ulong start_nonce, ulong target, uint isolate ) { __local compute_hash_share share[HASHES_PER_LOOP]; uint const gid = get_global_id(0); hash32_t hash = compute_hash(share, g_header, g_dag, start_nonce + gid, isolate); if (as_ulong(as_uchar8(hash.ulongs[0]).s76543210) < target) { uint slot = min(MAX_OUTPUTS, atomic_inc(&g_output[0]) + 1); g_output[slot] = gid; } } __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) __kernel void ethash_hash_chunks( __global hash32_t* g_hashes, __constant hash32_t const* g_header, __global hash128_t const* g_dag, __global hash128_t const* g_dag1, __global hash128_t const* g_dag2, __global hash128_t const* g_dag3, ulong start_nonce, uint isolate ) { __local compute_hash_share share[HASHES_PER_LOOP]; uint const gid = get_global_id(0); g_hashes[gid] = compute_hash_chunks(share, g_header, g_dag, g_dag1, g_dag2, g_dag3,start_nonce + gid, isolate); } __attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1))) __kernel void ethash_search_chunks( __global volatile uint* restrict g_output, __constant hash32_t const* g_header, __global hash128_t const* g_dag, __global hash128_t const* g_dag1, __global hash128_t const* g_dag2, __global hash128_t const* g_dag3, ulong start_nonce, ulong target, uint isolate ) { __local compute_hash_share share[HASHES_PER_LOOP]; uint const gid = get_global_id(0); hash32_t hash = compute_hash_chunks(share, g_header, g_dag, g_dag1, g_dag2, g_dag3, start_nonce + gid, isolate); if (as_ulong(as_uchar8(hash.ulongs[0]).s76543210) < target) { uint slot = min(convert_uint(MAX_OUTPUTS), convert_uint(atomic_inc(&g_output[0]) + 1)); g_output[slot] = gid; } }