/* This file is part of ethash. ethash is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ethash is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file internal.c * @author Tim Hughes * @author Matthew Wampler-Doty * @date 2015 */ #include #include #include #include "ethash.h" #include "fnv.h" #include "endian.h" #include "internal.h" #include "data_sizes.h" #ifdef WITH_CRYPTOPP #include "sha3_cryptopp.h" #else #include "sha3.h" #endif // WITH_CRYPTOPP uint64_t ethash_get_datasize(const uint32_t block_number) { assert(block_number / EPOCH_LENGTH < 2048); return dag_sizes[block_number / EPOCH_LENGTH]; } uint64_t ethash_get_cachesize(const uint32_t block_number) { assert(block_number / EPOCH_LENGTH < 2048); return cache_sizes[block_number / EPOCH_LENGTH]; } // Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014) // https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf // SeqMemoHash(s, R, N) bool static ethash_compute_cache_nodes(node *const nodes, ethash_params const *params, ethash_h256_t const* seed) { if (params->cache_size % sizeof(node) != 0) { return false; } uint32_t const num_nodes = (uint32_t) (params->cache_size / sizeof(node)); SHA3_512(nodes[0].bytes, (uint8_t*)seed, 32); for (unsigned i = 1; i != num_nodes; ++i) { SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64); } for (unsigned j = 0; j != CACHE_ROUNDS; j++) { for (unsigned i = 0; i != num_nodes; i++) { uint32_t const idx = nodes[i].words[0] % num_nodes; node data; data = nodes[(num_nodes - 1 + i) % num_nodes]; for (unsigned w = 0; w != NODE_WORDS; ++w) { data.words[w] ^= nodes[idx].words[w]; } SHA3_512(nodes[i].bytes, data.bytes, sizeof(data)); } } // now perform endian conversion #if BYTE_ORDER != LITTLE_ENDIAN for (unsigned w = 0; w != (num_nodes*NODE_WORDS); ++w) { nodes->words[w] = fix_endian32(nodes->words[w]); } #endif return true; } ethash_cache *ethash_cache_new(ethash_params const *params, ethash_h256_t const *seed) { ethash_cache *ret; ret = malloc(sizeof(*ret)); if (!ret) { return NULL; } ret->mem = malloc(params->cache_size); if (!ret->mem) { goto fail_free_cache; } node *nodes = (node*)ret->mem; if (!ethash_compute_cache_nodes(nodes, params, seed)) { goto fail_free_cache_mem; } return ret; fail_free_cache_mem: free(ret->mem); fail_free_cache: free(ret); return NULL; } void ethash_cache_delete(ethash_cache *c) { free(c->mem); free(c); } void ethash_calculate_dag_item(node *const ret, const unsigned node_index, const struct ethash_params *params, const struct ethash_cache *cache) { uint32_t num_parent_nodes = (uint32_t) (params->cache_size / sizeof(node)); node const *cache_nodes = (node const *) cache->mem; node const *init = &cache_nodes[node_index % num_parent_nodes]; memcpy(ret, init, sizeof(node)); ret->words[0] ^= node_index; SHA3_512(ret->bytes, ret->bytes, sizeof(node)); #if defined(_M_X64) && ENABLE_SSE __m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME); __m128i xmm0 = ret->xmm[0]; __m128i xmm1 = ret->xmm[1]; __m128i xmm2 = ret->xmm[2]; __m128i xmm3 = ret->xmm[3]; #endif for (unsigned i = 0; i != DATASET_PARENTS; ++i) { uint32_t parent_index = ((node_index ^ i) * FNV_PRIME ^ ret->words[i % NODE_WORDS]) % num_parent_nodes; node const *parent = &cache_nodes[parent_index]; #if defined(_M_X64) && ENABLE_SSE { xmm0 = _mm_mullo_epi32(xmm0, fnv_prime); xmm1 = _mm_mullo_epi32(xmm1, fnv_prime); xmm2 = _mm_mullo_epi32(xmm2, fnv_prime); xmm3 = _mm_mullo_epi32(xmm3, fnv_prime); xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]); xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]); xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]); xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]); // have to write to ret as values are used to compute index ret->xmm[0] = xmm0; ret->xmm[1] = xmm1; ret->xmm[2] = xmm2; ret->xmm[3] = xmm3; } #else { for (unsigned w = 0; w != NODE_WORDS; ++w) { ret->words[w] = fnv_hash(ret->words[w], parent->words[w]); } } #endif } SHA3_512(ret->bytes, ret->bytes, sizeof(node)); } bool ethash_compute_full_data(void *mem, ethash_params const *params, ethash_cache const *cache) { if (params->full_size % (sizeof(uint32_t) * MIX_WORDS) != 0 || (params->full_size % sizeof(node)) != 0) { return false; } node *full_nodes = mem; // now compute full nodes for (unsigned n = 0; n != (params->full_size / sizeof(node)); ++n) { ethash_calculate_dag_item(&(full_nodes[n]), n, params, cache); } return true; } static bool ethash_hash(ethash_return_value *ret, node const *full_nodes, ethash_cache const *cache, ethash_params const *params, ethash_h256_t const *header_hash, const uint64_t nonce, ethash_callback_t callback) { if (params->full_size % MIX_WORDS != 0) { return false; } // pack hash and nonce together into first 40 bytes of s_mix assert(sizeof(node) * 8 == 512); node s_mix[MIX_NODES + 1]; memcpy(s_mix[0].bytes, header_hash, 32); #if BYTE_ORDER != LITTLE_ENDIAN s_mix[0].double_words[4] = fix_endian64(nonce); #else s_mix[0].double_words[4] = nonce; #endif // compute sha3-512 hash and replicate across mix SHA3_512(s_mix->bytes, s_mix->bytes, 40); #if BYTE_ORDER != LITTLE_ENDIAN for (unsigned w = 0; w != 16; ++w) { s_mix[0].words[w] = fix_endian32(s_mix[0].words[w]); } #endif node *const mix = s_mix + 1; for (unsigned w = 0; w != MIX_WORDS; ++w) { mix->words[w] = s_mix[0].words[w % NODE_WORDS]; } unsigned const page_size = sizeof(uint32_t) * MIX_WORDS, num_full_pages = (unsigned) (params->full_size / page_size); for (unsigned i = 0; i != ACCESSES; ++i) { uint32_t const index = ((s_mix->words[0] ^ i) * FNV_PRIME ^ mix->words[i % MIX_WORDS]) % num_full_pages; for (unsigned n = 0; n != MIX_NODES; ++n) { const node *dag_node; if (callback && callback(((float)(i * n) / (float)(ACCESSES * MIX_NODES) * 100) != 0)) { return false; } if (full_nodes) { dag_node = &full_nodes[MIX_NODES * index + n]; } else { node tmp_node; ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, params, cache); dag_node = &tmp_node; } #if defined(_M_X64) && ENABLE_SSE { __m128i fnv_prime = _mm_set1_epi32(FNV_PRIME); __m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]); __m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]); __m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]); __m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]); mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]); mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]); mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]); mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]); } #else { for (unsigned w = 0; w != NODE_WORDS; ++w) { mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]); } } #endif } } // compress mix for (unsigned w = 0; w != MIX_WORDS; w += 4) { uint32_t reduction = mix->words[w + 0]; reduction = reduction * FNV_PRIME ^ mix->words[w + 1]; reduction = reduction * FNV_PRIME ^ mix->words[w + 2]; reduction = reduction * FNV_PRIME ^ mix->words[w + 3]; mix->words[w / 4] = reduction; } #if BYTE_ORDER != LITTLE_ENDIAN for (unsigned w = 0; w != MIX_WORDS/4; ++w) { mix->words[w] = fix_endian32(mix->words[w]); } #endif memcpy(&ret->mix_hash, mix->bytes, 32); // final Keccak hash SHA3_256(&ret->result, s_mix->bytes, 64 + 32); // Keccak-256(s + compressed_mix) return true; } void ethash_quick_hash(ethash_h256_t *return_hash, ethash_h256_t const *header_hash, const uint64_t nonce, ethash_h256_t const *mix_hash) { uint8_t buf[64 + 32]; memcpy(buf, header_hash, 32); #if BYTE_ORDER != LITTLE_ENDIAN nonce = fix_endian64(nonce); #endif memcpy(&(buf[32]), &nonce, 8); SHA3_512(buf, buf, 40); memcpy(&(buf[64]), mix_hash, 32); SHA3_256(return_hash, buf, 64 + 32); } void ethash_get_seedhash(ethash_h256_t *seedhash, const uint32_t block_number) { ethash_h256_reset(seedhash); const uint32_t epochs = block_number / EPOCH_LENGTH; for (uint32_t i = 0; i < epochs; ++i) SHA3_256(seedhash, (uint8_t*)seedhash, 32); } int ethash_quick_check_difficulty(ethash_h256_t const *header_hash, const uint64_t nonce, ethash_h256_t const *mix_hash, ethash_h256_t const *difficulty) { ethash_h256_t return_hash; ethash_quick_hash(&return_hash, header_hash, nonce, mix_hash); return ethash_check_difficulty(&return_hash, difficulty); } ethash_light_t ethash_light_new(ethash_params const *params, ethash_h256_t const *seed) { struct ethash_light *ret; ret = calloc(sizeof(*ret), 1); if (!ret) { return NULL; } ret->cache = ethash_cache_new(params, seed); if (!ret->cache) { goto fail_free_light; } return ret; fail_free_light: free(ret); return NULL; } void ethash_light_delete(ethash_light_t light) { if (light->cache) { ethash_cache_delete(light->cache); } free(light); } bool ethash_light_compute(ethash_return_value *ret, ethash_light_t light, ethash_params const *params, const ethash_h256_t *header_hash, const uint64_t nonce) { return ethash_hash(ret, NULL, light->cache, params, header_hash, nonce, NULL); } ethash_cache *ethash_light_get_cache(ethash_light_t light) { return light->cache; } ethash_cache *ethash_light_acquire_cache(ethash_light_t light) { ethash_cache* ret = light->cache; light->cache = 0; return ret; } ethash_full_t ethash_full_new(ethash_params const* params, ethash_cache const* cache, const ethash_h256_t *seed, ethash_callback_t callback) { struct ethash_full *ret; ret = calloc(sizeof(*ret), 1); if (!ret) { return NULL; } ret->cache = (ethash_cache*)cache; ret->data = malloc(params->full_size); if (!ret->data) { goto fail_free_full; } if (!ethash_compute_full_data(ret->data, params, cache)) { goto fail_free_full_data; } ret->seed = seed; ret->callback = callback; return ret; fail_free_full_data: free(ret->data); fail_free_full: free(ret); return NULL; } void ethash_full_delete(ethash_full_t full) { if (full->cache) { ethash_cache_delete(full->cache); } free(full->data); free(full); } bool ethash_full_compute(ethash_return_value *ret, ethash_full_t full, ethash_params const *params, const ethash_h256_t *header_hash, const uint64_t nonce) { return ethash_hash(ret, (node const*)full->data, NULL, params, header_hash, nonce, full->callback); } ethash_cache *ethash_full_get_cache(ethash_full_t full) { return full->cache; } ethash_cache *ethash_full_acquire_cache(ethash_full_t full) { ethash_cache* ret = full->cache; full->cache = 0; return ret; } /** * ========================= * = DEPRECATED API = * ========================= * * Kept for backwards compatibility with whoever still uses it. Please consider * switching to the new API (look above) */ void ethash_mkcache(ethash_cache *cache, ethash_params const *params, ethash_h256_t const* seed) { node *nodes = (node*) cache->mem; ethash_compute_cache_nodes(nodes, params, seed); } void ethash_full(ethash_return_value *ret, void const *full_mem, ethash_params const *params, ethash_h256_t const *header_hash, const uint64_t nonce) { ethash_hash(ret, (node const *) full_mem, NULL, params, header_hash, nonce, NULL); } void ethash_light(ethash_return_value *ret, ethash_cache const *cache, ethash_params const *params, ethash_h256_t const *header_hash, const uint64_t nonce) { ethash_hash(ret, NULL, cache, params, header_hash, nonce, NULL); }