#include "Arith256.h" #include "Runtime.h" #include "Type.h" #include "Endianness.h" #include #include namespace dev { namespace eth { namespace jit { Arith256::Arith256(llvm::IRBuilder<>& _builder) : CompilerHelper(_builder) { using namespace llvm; m_result = m_builder.CreateAlloca(Type::Word, nullptr, "arith.result"); m_arg1 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg1"); m_arg2 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg2"); m_arg3 = m_builder.CreateAlloca(Type::Word, nullptr, "arith.arg3"); using Linkage = GlobalValue::LinkageTypes; llvm::Type* arg2Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr}; llvm::Type* arg3Types[] = {Type::WordPtr, Type::WordPtr, Type::WordPtr, Type::WordPtr}; m_mul = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mul", getModule()); m_div = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_div", getModule()); m_mod = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_mod", getModule()); m_sdiv = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_sdiv", getModule()); m_smod = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_smod", getModule()); m_exp = Function::Create(FunctionType::get(Type::Void, arg2Types, false), Linkage::ExternalLinkage, "arith_exp", getModule()); m_addmod = Function::Create(FunctionType::get(Type::Void, arg3Types, false), Linkage::ExternalLinkage, "arith_addmod", getModule()); m_mulmod = Function::Create(FunctionType::get(Type::Void, arg3Types, false), Linkage::ExternalLinkage, "arith_mulmod", getModule()); } Arith256::~Arith256() {} llvm::Value* Arith256::binaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2) { m_builder.CreateStore(_arg1, m_arg1); m_builder.CreateStore(_arg2, m_arg2); m_builder.CreateCall3(_op, m_arg1, m_arg2, m_result); return m_builder.CreateLoad(m_result); } llvm::Value* Arith256::ternaryOp(llvm::Function* _op, llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3) { m_builder.CreateStore(_arg1, m_arg1); m_builder.CreateStore(_arg2, m_arg2); m_builder.CreateStore(_arg3, m_arg3); m_builder.CreateCall4(_op, m_arg1, m_arg2, m_arg3, m_result); return m_builder.CreateLoad(m_result); } llvm::Value* Arith256::mul(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_mul, _arg1, _arg2); } llvm::Value* Arith256::div(llvm::Value* _arg1, llvm::Value* _arg2) { //return Endianness::toNative(m_builder, binaryOp(m_div, Endianness::toBE(m_builder, _arg1), Endianness::toBE(m_builder, _arg2))); return binaryOp(m_div, _arg1, _arg2); } llvm::Value* Arith256::mod(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_mod, _arg1, _arg2); } llvm::Value* Arith256::sdiv(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_sdiv, _arg1, _arg2); } llvm::Value* Arith256::smod(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_smod, _arg1, _arg2); } llvm::Value* Arith256::exp(llvm::Value* _arg1, llvm::Value* _arg2) { return binaryOp(m_exp, _arg1, _arg2); } llvm::Value* Arith256::addmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3) { return ternaryOp(m_addmod, _arg1, _arg2, _arg3); } llvm::Value* Arith256::mulmod(llvm::Value* _arg1, llvm::Value* _arg2, llvm::Value* _arg3) { return ternaryOp(m_mulmod, _arg1, _arg2, _arg3); } namespace { using s256 = boost::multiprecision::int256_t; inline s256 u2s(u256 _u) { static const bigint c_end = (bigint)1 << 256; static const u256 c_send = (u256)1 << 255; if (_u < c_send) return (s256)_u; else return (s256)-(c_end - _u); } inline u256 s2u(s256 _u) { static const bigint c_end = (bigint)1 << 256; if (_u >= 0) return (u256)_u; else return (u256)(c_end + _u); } using uint128 = __uint128_t; // uint128 add(uint128 a, uint128 b) { return a + b; } // uint128 mul(uint128 a, uint128 b) { return a * b; } // // uint128 mulq(uint64_t x, uint64_t y) // { // return (uint128)x * (uint128)y; // } // // uint128 addc(uint64_t x, uint64_t y) // { // return (uint128)x * (uint128)y; // } struct uint256 { uint64_t lo; uint64_t mid; uint128 hi; }; // uint256 add(uint256 x, uint256 y) // { // auto lo = (uint128) x.lo + y.lo; // auto mid = (uint128) x.mid + y.mid + (lo >> 64); // return {lo, mid, x.hi + y.hi + (mid >> 64)}; // } uint256 mul(uint256 x, uint256 y) { auto t1 = (uint128) x.lo * y.lo; auto t2 = (uint128) x.lo * y.mid; auto t3 = x.lo * y.hi; auto t4 = (uint128) x.mid * y.lo; auto t5 = (uint128) x.mid * y.mid; auto t6 = x.mid * y.hi; auto t7 = x.hi * y.lo; auto t8 = x.hi * y.mid; auto lo = (uint64_t) t1; auto m1 = (t1 >> 64) + (uint64_t) t2; auto m2 = (uint64_t) m1; auto mid = (uint128) m2 + (uint64_t) t4; auto hi = (t2 >> 64) + t3 + (t4 >> 64) + t5 + (t6 << 64) + t7 + (t8 << 64) + (m1 >> 64) + (mid >> 64); return {lo, (uint64_t)mid, hi}; } bool isZero(i256 const* _n) { return _n->a == 0 && _n->b == 0 && _n->c == 0 && _n->d == 0; } const auto nLimbs = sizeof(i256) / sizeof(mp_limb_t); int countLimbs(i256 const* _n) { static const auto limbsInWord = sizeof(_n->a) / sizeof(mp_limb_t); static_assert(limbsInWord == 1, "E?"); int l = nLimbs; if (_n->d != 0) return l; l -= limbsInWord; if (_n->c != 0) return l; l -= limbsInWord; if (_n->b != 0) return l; l -= limbsInWord; if (_n->a != 0) return l; return 0; } } } } } extern "C" { using namespace dev::eth::jit; EXPORT void arith_mul(uint256* _arg1, uint256* _arg2, uint256* o_result) { *o_result = mul(*_arg1, *_arg2); } EXPORT void arith_div(i256* _arg1, i256* _arg2, i256* o_result) { *o_result = {}; if (isZero(_arg2)) return; mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast(_arg1)}; mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast(_arg2)}; mpz_t z{nLimbs, 0, reinterpret_cast(o_result)}; mpz_tdiv_q(z, x, y); // auto arg1 = llvm2eth(*_arg1); // auto arg2 = llvm2eth(*_arg2); // auto res = arg2 == 0 ? arg2 : arg1 / arg2; // std::cout << "DIV " << arg1 << "/" << arg2 << " = " << res << std::endl; // gmp_printf("GMP %Zd / %Zd = %Zd\n", x, y, z); } EXPORT void arith_mod(i256* _arg1, i256* _arg2, i256* o_result) { *o_result = {}; if (isZero(_arg2)) return; mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast(_arg1)}; mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast(_arg2)}; mpz_t z{nLimbs, 0, reinterpret_cast(o_result)}; mpz_tdiv_r(z, x, y); } EXPORT void arith_sdiv(i256* _arg1, i256* _arg2, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); *o_result = eth2llvm(arg2 == 0 ? arg2 : s2u(u2s(arg1) / u2s(arg2))); } EXPORT void arith_smod(i256* _arg1, i256* _arg2, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); *o_result = eth2llvm(arg2 == 0 ? arg2 : s2u(u2s(arg1) % u2s(arg2))); } EXPORT void arith_exp(i256* _arg1, i256* _arg2, i256* o_result) { *o_result = {}; static mp_limb_t mod_limbs[nLimbs + 1] = {}; mod_limbs[nLimbs] = 1; static const mpz_t mod{nLimbs + 1, nLimbs + 1, &mod_limbs[0]}; mpz_t x{nLimbs, countLimbs(_arg1), reinterpret_cast(_arg1)}; mpz_t y{nLimbs, countLimbs(_arg2), reinterpret_cast(_arg2)}; mpz_t z{nLimbs, 0, reinterpret_cast(o_result)}; mpz_powm(z, x, y, mod); } EXPORT void arith_mulmod(i256* _arg1, i256* _arg2, i256* _arg3, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); auto arg3 = llvm2eth(*_arg3); if (arg3 != 0) *o_result = eth2llvm(u256((bigint(arg1) * bigint(arg2)) % arg3)); else *o_result = {}; } EXPORT void arith_addmod(i256* _arg1, i256* _arg2, i256* _arg3, i256* o_result) { auto arg1 = llvm2eth(*_arg1); auto arg2 = llvm2eth(*_arg2); auto arg3 = llvm2eth(*_arg3); if (arg3 != 0) *o_result = eth2llvm(u256((bigint(arg1) + bigint(arg2)) % arg3)); else *o_result = {}; } }