#include "Compiler.h" #include #include #include "Memory.h" #include "Stack.h" #include "Ext.h" namespace evmcc { struct { llvm::Type* word8; llvm::Type* word8ptr; llvm::Type* word256; llvm::Type* word256ptr; llvm::Type* word256arr; llvm::Type* size; llvm::Type* Void; llvm::Type* WordLowPrecision; } Types; Compiler::Compiler() { auto& context = llvm::getGlobalContext(); Types.word8 = llvm::Type::getInt8Ty(context); Types.word8ptr = llvm::Type::getInt8PtrTy(context); Types.word256 = llvm::Type::getIntNTy(context, 256); Types.word256ptr = Types.word256->getPointerTo(); Types.word256arr = llvm::ArrayType::get(Types.word256, 100); Types.size = llvm::Type::getInt64Ty(context); Types.Void = llvm::Type::getVoidTy(context); // TODO: Use 64-bit for now. In 128-bit compiler-rt library functions are required Types.WordLowPrecision = llvm::Type::getIntNTy(context, 64); } BasicBlock& Compiler::getOrCreateBasicBlockAtPC(ProgramCounter pc) { auto blockIter = basicBlocks.find(pc); if (blockIter == basicBlocks.end()) { // Create a basic block at target pc directly in collection blockIter = basicBlocks.emplace(std::piecewise_construct, std::forward_as_tuple(pc), std::forward_as_tuple(pc, m_mainFunc)).first; } return blockIter->second; } void Compiler::createBasicBlocks(const dev::bytes& bytecode) { getOrCreateBasicBlockAtPC(0); getOrCreateBasicBlockAtPC(bytecode.size()); for (auto curr = bytecode.cbegin(); curr != bytecode.cend(); ++curr) { using dev::eth::Instruction; auto inst = static_cast(*curr); switch (inst) { case Instruction::PUSH1: case Instruction::PUSH2: case Instruction::PUSH3: case Instruction::PUSH4: case Instruction::PUSH5: case Instruction::PUSH6: case Instruction::PUSH7: case Instruction::PUSH8: case Instruction::PUSH9: case Instruction::PUSH10: case Instruction::PUSH11: case Instruction::PUSH12: case Instruction::PUSH13: case Instruction::PUSH14: case Instruction::PUSH15: case Instruction::PUSH16: case Instruction::PUSH17: case Instruction::PUSH18: case Instruction::PUSH19: case Instruction::PUSH20: case Instruction::PUSH21: case Instruction::PUSH22: case Instruction::PUSH23: case Instruction::PUSH24: case Instruction::PUSH25: case Instruction::PUSH26: case Instruction::PUSH27: case Instruction::PUSH28: case Instruction::PUSH29: case Instruction::PUSH30: case Instruction::PUSH31: case Instruction::PUSH32: { auto numBytes = static_cast(inst) - static_cast(Instruction::PUSH1) + 1; auto next = curr + numBytes + 1; if (next == bytecode.cend()) break; auto nextInst = static_cast(*next); if (nextInst == Instruction::JUMP || nextInst == Instruction::JUMPI) { // Compute target PC of the jump. dev::u256 val = 0; for (auto iter = curr + 1; iter < next; ++iter) { val <<= 8; val |= *iter; } // Create a block for the JUMP target. ProgramCounter targetPC = val.convert_to(); auto& targetBlock = getOrCreateBasicBlockAtPC(targetPC); ProgramCounter jumpPC = (next - bytecode.cbegin()); jumpTargets[jumpPC] = targetBlock; // Create a block following the JUMP. if (next + 1 < bytecode.cend()) { ProgramCounter nextPC = (next + 1 - bytecode.cbegin()); getOrCreateBasicBlockAtPC(nextPC); } curr += 1; // skip over JUMP } curr += numBytes; break; } case Instruction::JUMP: case Instruction::JUMPI: { std::cerr << "JUMP/JUMPI at " << (curr - bytecode.cbegin()) << " not preceded by PUSH\n"; std::exit(1); } case Instruction::RETURN: case Instruction::STOP: case Instruction::SUICIDE: { // Create a basic block starting at the following instruction. if (curr + 1 < bytecode.cend()) { ProgramCounter nextPC = (curr + 1 - bytecode.cbegin()); getOrCreateBasicBlockAtPC(nextPC); } break; } default: break; } } } std::unique_ptr Compiler::compile(const dev::bytes& bytecode) { using namespace llvm; auto& context = getGlobalContext(); auto module = std::make_unique("main", context); IRBuilder<> builder(context); // Create main function const auto i32Ty = builder.getInt32Ty(); //Type* retTypeElems[] = {i32Ty, i32Ty}; //auto retType = StructType::create(retTypeElems, "MemRef", true); m_mainFunc = Function::Create(FunctionType::get(builder.getInt64Ty(), false), Function::ExternalLinkage, "main", module.get()); // Create the basic blocks. auto entryBlock = llvm::BasicBlock::Create(context, "entry", m_mainFunc); builder.SetInsertPoint(entryBlock); createBasicBlocks(bytecode); // Init runtime structures. auto extStack = Stack(builder, module.get()); auto memory = Memory(builder, module.get()); auto ext = Ext(builder, module.get()); llvm::BasicBlock* currentBlock = entryBlock; BBStack stack(extStack); // Stack for current block for (auto pc = bytecode.cbegin(); pc != bytecode.cend(); ++pc) { using dev::eth::Instruction; ProgramCounter currentPC = pc - bytecode.cbegin(); auto blockIter = basicBlocks.find(currentPC); if (blockIter != basicBlocks.end()) { auto& nextBlock = blockIter->second; // Terminate the current block by jumping to the next one. if (currentBlock != nullptr) builder.CreateBr(nextBlock); // Insert the next block into the main function. builder.SetInsertPoint(nextBlock); currentBlock = nextBlock; assert(stack.empty()); // Stack should be empty } assert(currentBlock != nullptr); auto inst = static_cast(*pc); switch (inst) { case Instruction::ADD: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto result = builder.CreateAdd(lhs, rhs); stack.push(result); break; } case Instruction::SUB: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto result = builder.CreateSub(lhs, rhs); stack.push(result); break; } case Instruction::MUL: { auto lhs256 = stack.pop(); auto rhs256 = stack.pop(); auto lhs128 = builder.CreateTrunc(lhs256, Types.WordLowPrecision); auto rhs128 = builder.CreateTrunc(rhs256, Types.WordLowPrecision); auto res128 = builder.CreateMul(lhs128, rhs128); auto res256 = builder.CreateZExt(res128, Types.word256); stack.push(res256); break; } case Instruction::DIV: { auto lhs256 = stack.pop(); auto rhs256 = stack.pop(); auto lhs128 = builder.CreateTrunc(lhs256, Types.WordLowPrecision); auto rhs128 = builder.CreateTrunc(rhs256, Types.WordLowPrecision); auto res128 = builder.CreateUDiv(lhs128, rhs128); auto res256 = builder.CreateZExt(res128, Types.word256); stack.push(res256); break; } case Instruction::SDIV: { auto lhs256 = stack.pop(); auto rhs256 = stack.pop(); auto lhs128 = builder.CreateTrunc(lhs256, Types.WordLowPrecision); auto rhs128 = builder.CreateTrunc(rhs256, Types.WordLowPrecision); auto res128 = builder.CreateSDiv(lhs128, rhs128); auto res256 = builder.CreateSExt(res128, Types.word256); stack.push(res256); break; } case Instruction::MOD: { auto lhs256 = stack.pop(); auto rhs256 = stack.pop(); auto lhs128 = builder.CreateTrunc(lhs256, Types.WordLowPrecision); auto rhs128 = builder.CreateTrunc(rhs256, Types.WordLowPrecision); auto res128 = builder.CreateURem(lhs128, rhs128); auto res256 = builder.CreateZExt(res128, Types.word256); stack.push(res256); break; } case Instruction::SMOD: { auto lhs256 = stack.pop(); auto rhs256 = stack.pop(); auto lhs128 = builder.CreateTrunc(lhs256, Types.WordLowPrecision); auto rhs128 = builder.CreateTrunc(rhs256, Types.WordLowPrecision); auto res128 = builder.CreateSRem(lhs128, rhs128); auto res256 = builder.CreateSExt(res128, Types.word256); stack.push(res256); break; } case Instruction::NEG: { auto top = stack.pop(); auto zero = ConstantInt::get(Types.word256, 0); auto res = builder.CreateSub(zero, top); stack.push(res); break; } case Instruction::LT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = builder.CreateICmpULT(lhs, rhs); auto res256 = builder.CreateZExt(res1, Types.word256); stack.push(res256); break; } case Instruction::GT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = builder.CreateICmpUGT(lhs, rhs); auto res256 = builder.CreateZExt(res1, Types.word256); stack.push(res256); break; } case Instruction::SLT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = builder.CreateICmpSLT(lhs, rhs); auto res256 = builder.CreateZExt(res1, Types.word256); stack.push(res256); break; } case Instruction::SGT: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = builder.CreateICmpSGT(lhs, rhs); auto res256 = builder.CreateZExt(res1, Types.word256); stack.push(res256); break; } case Instruction::EQ: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res1 = builder.CreateICmpEQ(lhs, rhs); auto res256 = builder.CreateZExt(res1, Types.word256); stack.push(res256); break; } case Instruction::NOT: { auto top = stack.pop(); auto zero = ConstantInt::get(Types.word256, 0); auto iszero = builder.CreateICmpEQ(top, zero, "iszero"); auto result = builder.CreateZExt(iszero, Types.word256); stack.push(result); break; } case Instruction::AND: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = builder.CreateAnd(lhs, rhs); stack.push(res); break; } case Instruction::OR: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = builder.CreateOr(lhs, rhs); stack.push(res); break; } case Instruction::XOR: { auto lhs = stack.pop(); auto rhs = stack.pop(); auto res = builder.CreateXor(lhs, rhs); stack.push(res); break; } case Instruction::BYTE: { const auto byteNum = stack.pop(); auto value = stack.pop(); /* if (byteNum < 32) - use select { value <<= byteNum*8 value >>= 31*8 push value } else push 0 */ // TODO: Shifting by 0 gives wrong results as of this bug http://llvm.org/bugs/show_bug.cgi?id=16439 auto shbits = builder.CreateShl(byteNum, builder.getIntN(256, 3)); value = builder.CreateShl(value, shbits); value = builder.CreateLShr(value, builder.getIntN(256, 31 * 8)); auto byteNumValid = builder.CreateICmpULT(byteNum, builder.getIntN(256, 32)); value = builder.CreateSelect(byteNumValid, value, builder.getIntN(256, 0)); stack.push(value); break; } case Instruction::SHA3: { auto inOff = stack.pop(); auto inSize = stack.pop(); auto hash = ext.sha3(inOff, inSize); stack.push(hash); } case Instruction::POP: { stack.pop(); break; } case Instruction::PUSH1: case Instruction::PUSH2: case Instruction::PUSH3: case Instruction::PUSH4: case Instruction::PUSH5: case Instruction::PUSH6: case Instruction::PUSH7: case Instruction::PUSH8: case Instruction::PUSH9: case Instruction::PUSH10: case Instruction::PUSH11: case Instruction::PUSH12: case Instruction::PUSH13: case Instruction::PUSH14: case Instruction::PUSH15: case Instruction::PUSH16: case Instruction::PUSH17: case Instruction::PUSH18: case Instruction::PUSH19: case Instruction::PUSH20: case Instruction::PUSH21: case Instruction::PUSH22: case Instruction::PUSH23: case Instruction::PUSH24: case Instruction::PUSH25: case Instruction::PUSH26: case Instruction::PUSH27: case Instruction::PUSH28: case Instruction::PUSH29: case Instruction::PUSH30: case Instruction::PUSH31: case Instruction::PUSH32: { auto numBytes = static_cast(inst) - static_cast(Instruction::PUSH1) + 1; auto value = llvm::APInt(256, 0); for (decltype(numBytes) i = 0; i < numBytes; ++i) // TODO: Use pc as iterator { ++pc; value <<= 8; value |= *pc; } auto c = builder.getInt(value); stack.push(c); break; } case Instruction::DUP1: case Instruction::DUP2: case Instruction::DUP3: case Instruction::DUP4: case Instruction::DUP5: case Instruction::DUP6: case Instruction::DUP7: case Instruction::DUP8: case Instruction::DUP9: case Instruction::DUP10: case Instruction::DUP11: case Instruction::DUP12: case Instruction::DUP13: case Instruction::DUP14: case Instruction::DUP15: case Instruction::DUP16: { auto index = static_cast(inst) - static_cast(Instruction::DUP1); stack.dup(index); break; } case Instruction::SWAP1: case Instruction::SWAP2: case Instruction::SWAP3: case Instruction::SWAP4: case Instruction::SWAP5: case Instruction::SWAP6: case Instruction::SWAP7: case Instruction::SWAP8: case Instruction::SWAP9: case Instruction::SWAP10: case Instruction::SWAP11: case Instruction::SWAP12: case Instruction::SWAP13: case Instruction::SWAP14: case Instruction::SWAP15: case Instruction::SWAP16: { auto index = static_cast(inst) - static_cast(Instruction::SWAP1) + 1; stack.swap(index); break; } case Instruction::MLOAD: { auto addr = stack.pop(); auto word = memory.loadWord(addr); stack.push(word); break; } case Instruction::MSTORE: { auto addr = stack.pop(); auto word = stack.pop(); memory.storeWord(addr, word); break; } case Instruction::MSTORE8: { auto addr = stack.pop(); auto word = stack.pop(); memory.storeByte(addr, word); break; } case Instruction::MSIZE: { auto word = memory.getSize(); stack.push(word); break; } case Instruction::SLOAD: { auto index = stack.pop(); auto value = ext.store(index); stack.push(value); break; } case Instruction::SSTORE: { auto index = stack.pop(); auto value = stack.pop(); ext.setStore(index, value); break; } case Instruction::JUMP: { // The target address is computed at compile time, // just pop it without looking... stack.pop(); stack.reset(); auto targetBlock = jumpTargets[currentPC]; builder.CreateBr(targetBlock); currentBlock = nullptr; break; } case Instruction::JUMPI: { assert(pc + 1 < bytecode.cend()); // The target address is computed at compile time, // just pop it without looking... stack.pop(); auto top = stack.pop(); auto zero = ConstantInt::get(Types.word256, 0); auto cond = builder.CreateICmpNE(top, zero, "nonzero"); stack.reset(); auto targetBlock = jumpTargets[currentPC]; auto& followBlock = basicBlocks.find(currentPC + 1)->second; builder.CreateCondBr(cond, targetBlock, followBlock); currentBlock = nullptr; break; } case Instruction::PC: { auto value = builder.getIntN(256, currentPC); stack.push(value); break; } case Instruction::ADDRESS: { auto value = ext.address(); stack.push(value); break; } case Instruction::BALANCE: { auto address = stack.pop(); auto value = ext.balance(address); stack.push(value); break; } case Instruction::CALLER: { auto value = ext.caller(); stack.push(value); break; } case Instruction::ORIGIN: { auto value = ext.origin(); stack.push(value); break; } case Instruction::CALLVALUE: { auto value = ext.callvalue(); stack.push(value); break; } case Instruction::CALLDATASIZE: { auto value = ext.calldatasize(); stack.push(value); break; } case Instruction::CALLDATALOAD: { auto index = stack.pop(); auto value = ext.calldataload(index); stack.push(value); break; } case Instruction::GASPRICE: { auto value = ext.gasprice(); stack.push(value); break; } case Instruction::CODESIZE: { auto value = builder.getIntN(256, bytecode.size()); stack.push(value); break; } case Instruction::PREVHASH: { auto value = ext.prevhash(); stack.push(value); break; } case Instruction::COINBASE: { auto value = ext.coinbase(); stack.push(value); break; } case Instruction::TIMESTAMP: { auto value = ext.timestamp(); stack.push(value); break; } case Instruction::NUMBER: { auto value = ext.number(); stack.push(value); break; } case Instruction::DIFFICULTY: { auto value = ext.difficulty(); stack.push(value); break; } case Instruction::GASLIMIT: { auto value = ext.gaslimit(); stack.push(value); break; } case Instruction::CREATE: { auto endowment = stack.pop(); auto initOff = stack.pop(); auto initSize = stack.pop(); auto address = ext.create(endowment, initOff, initSize); stack.push(address); break; } case Instruction::CALL: { auto gas = stack.pop(); auto receiveAddress = stack.pop(); auto value = stack.pop(); auto inOff = stack.pop(); auto inSize = stack.pop(); auto outOff = stack.pop(); auto outSize = stack.pop(); auto ret = ext.call(gas, receiveAddress, value, inOff, inSize, outOff, outSize); stack.push(ret); break; } case Instruction::RETURN: { auto index = stack.pop(); auto size = stack.pop(); // MCJIT does not support returning structs //auto index32 = builder.CreateTrunc(index, i32Ty, "index32"); //auto size32 = builder.CreateTrunc(size, i32Ty, "size32"); //auto ret = builder.CreateInsertValue(UndefValue::get(retType), index32, 0, "ret"); //ret = builder.CreateInsertValue(ret, size32, 1, "ret"); auto ret = builder.CreateTrunc(index, builder.getInt64Ty()); ret = builder.CreateShl(ret, 32); size = builder.CreateTrunc(size, i32Ty); size = builder.CreateZExt(size, builder.getInt64Ty()); ret = builder.CreateOr(ret, size); builder.CreateRet(ret); stack.clear(); currentBlock = nullptr; break; } case Instruction::SUICIDE: { auto address = stack.pop(); ext.suicide(address); // Fall through } case Instruction::STOP: { builder.CreateRet(builder.getInt64(0)); stack.clear(); currentBlock = nullptr; break; } } } // Generate the final basic block. auto finalPC = bytecode.size(); auto it = basicBlocks.find(finalPC); assert(it != basicBlocks.end()); auto& finalBlock = it->second; if (currentBlock != nullptr) builder.CreateBr(finalBlock); builder.SetInsertPoint(finalBlock); builder.CreateRet(builder.getInt64(0)); return module; } }