/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file dash.cpp * @author Tim Hughes * @author Matthew Wampler-Doty * @date 2015 */ #include #include #include #include "ethash.h" #include "fnv.h" #include "endian.h" #include "internal.h" #include "data_sizes.h" #ifdef WITH_CRYPTOPP #include "sha3_cryptopp.h" #else #include "sha3.h" #endif // WITH_CRYPTOPP size_t ethash_get_datasize(const uint32_t block_number) { assert(block_number / EPOCH_LENGTH < 500); return dag_sizes[block_number / EPOCH_LENGTH]; } size_t ethash_get_cachesize(const uint32_t block_number) { assert(block_number / EPOCH_LENGTH < 500); return cache_sizes[block_number / EPOCH_LENGTH]; } // Follows Sergio's "STRICT MEMORY HARD HASHING FUNCTIONS" (2014) // https://bitslog.files.wordpress.com/2013/12/memohash-v0-3.pdf // SeqMemoHash(s, R, N) void static ethash_compute_cache_nodes( node *const nodes, ethash_params const *params, const uint8_t seed[32]) { assert((params->cache_size % sizeof(node)) == 0); uint32_t const num_nodes = (uint32_t)(params->cache_size / sizeof(node)); SHA3_512(nodes[0].bytes, seed, 32); for (unsigned i = 1; i != num_nodes; ++i) { SHA3_512(nodes[i].bytes, nodes[i - 1].bytes, 64); } for (unsigned j = 0; j != CACHE_ROUNDS; j++) { for (unsigned i = 0; i != num_nodes; i++) { uint32_t const idx = nodes[i].words[0] % num_nodes; node data; data = nodes[(num_nodes - 1 + i) % num_nodes]; for (unsigned w = 0; w != NODE_WORDS; ++w) { data.words[w] ^= nodes[idx].words[w]; } SHA3_512(nodes[i].bytes, data.bytes, sizeof(data)); } } // now perform endian conversion #if BYTE_ORDER != LITTLE_ENDIAN for (unsigned w = 0; w != (num_nodes*NODE_WORDS); ++w) { nodes->words[w] = fix_endian32(nodes->words[w]); } #endif } void ethash_mkcache( ethash_cache *cache, ethash_params const *params, const uint8_t seed[32]) { node *nodes = (node *) cache->mem; ethash_compute_cache_nodes(nodes, params, seed); } void ethash_calculate_dag_item( node *const ret, const unsigned node_index, const struct ethash_params *params, const struct ethash_cache *cache) { uint32_t num_parent_nodes = (uint32_t)(params->cache_size / sizeof(node)); node const *cache_nodes = (node const *) cache->mem; node const *init = &cache_nodes[node_index % num_parent_nodes]; memcpy(ret, init, sizeof(node)); ret->words[0] ^= node_index; SHA3_512(ret->bytes, ret->bytes, sizeof(node)); #if defined(_M_X64) && ENABLE_SSE __m128i const fnv_prime = _mm_set1_epi32(FNV_PRIME); __m128i xmm0 = ret->xmm[0]; __m128i xmm1 = ret->xmm[1]; __m128i xmm2 = ret->xmm[2]; __m128i xmm3 = ret->xmm[3]; #endif for (unsigned i = 0; i != DAG_PARENTS; ++i) { uint32_t parent_index = ((node_index ^ i)*FNV_PRIME ^ ret->words[i % NODE_WORDS]) % num_parent_nodes; node const *parent = &cache_nodes[parent_index]; #if defined(_M_X64) && ENABLE_SSE { xmm0 = _mm_mullo_epi32(xmm0, fnv_prime); xmm1 = _mm_mullo_epi32(xmm1, fnv_prime); xmm2 = _mm_mullo_epi32(xmm2, fnv_prime); xmm3 = _mm_mullo_epi32(xmm3, fnv_prime); xmm0 = _mm_xor_si128(xmm0, parent->xmm[0]); xmm1 = _mm_xor_si128(xmm1, parent->xmm[1]); xmm2 = _mm_xor_si128(xmm2, parent->xmm[2]); xmm3 = _mm_xor_si128(xmm3, parent->xmm[3]); // have to write to ret as values are used to compute index ret->xmm[0] = xmm0; ret->xmm[1] = xmm1; ret->xmm[2] = xmm2; ret->xmm[3] = xmm3; } #else { for (unsigned w = 0; w != NODE_WORDS; ++w) { ret->words[w] = fnv_hash(ret->words[w], parent->words[w]); } } #endif } SHA3_512(ret->bytes, ret->bytes, sizeof(node)); } void ethash_compute_full_data( void *mem, ethash_params const *params, ethash_cache const *cache) { assert((params->full_size % (sizeof(uint32_t) * MIX_WORDS)) == 0); assert((params->full_size % sizeof(node)) == 0); node *full_nodes = mem; // now compute full nodes for (unsigned n = 0; n != (params->full_size / sizeof(node)); ++n) { ethash_calculate_dag_item(&(full_nodes[n]), n, params, cache); } } static void ethash_hash( ethash_return_value * ret, node const *full_nodes, ethash_cache const *cache, ethash_params const *params, const uint8_t header_hash[32], const uint64_t nonce) { assert((params->full_size % MIX_WORDS) == 0); // pack hash and nonce together into first 40 bytes of s_mix assert(sizeof(node)*8 == 512); node s_mix[MIX_NODES + 1]; memcpy(s_mix[0].bytes, header_hash, 32); #if BYTE_ORDER != LITTLE_ENDIAN s_mix[0].double_words[4] = fix_endian64(nonce); #else s_mix[0].double_words[4] = nonce; #endif // compute sha3-512 hash and replicate across mix SHA3_512(s_mix->bytes, s_mix->bytes, 40); #if BYTE_ORDER != LITTLE_ENDIAN for (unsigned w = 0; w != 16; ++w) { s_mix[0].words[w] = fix_endian32(s_mix[0].words[w]); } #endif node* const mix = s_mix + 1; for (unsigned w = 0; w != MIX_WORDS; ++w) { mix->words[w] = s_mix[0].words[w % NODE_WORDS]; } unsigned const page_size = sizeof(uint32_t) * MIX_WORDS, num_full_pages = (unsigned)(params->full_size / page_size); for (unsigned i = 0; i != ACCESSES; ++i) { uint32_t const index = ((s_mix->words[0] ^ i)*FNV_PRIME ^ mix->words[i % MIX_WORDS]) % num_full_pages; for (unsigned n = 0; n != MIX_NODES; ++n) { const node * dag_node = &full_nodes[MIX_NODES * index + n]; if (!full_nodes) { node tmp_node; ethash_calculate_dag_item(&tmp_node, index * MIX_NODES + n, params, cache); dag_node = &tmp_node; } #if defined(_M_X64) && ENABLE_SSE { __m128i fnv_prime = _mm_set1_epi32(FNV_PRIME); __m128i xmm0 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[0]); __m128i xmm1 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[1]); __m128i xmm2 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[2]); __m128i xmm3 = _mm_mullo_epi32(fnv_prime, mix[n].xmm[3]); mix[n].xmm[0] = _mm_xor_si128(xmm0, dag_node->xmm[0]); mix[n].xmm[1] = _mm_xor_si128(xmm1, dag_node->xmm[1]); mix[n].xmm[2] = _mm_xor_si128(xmm2, dag_node->xmm[2]); mix[n].xmm[3] = _mm_xor_si128(xmm3, dag_node->xmm[3]); } #else { for (unsigned w = 0; w != NODE_WORDS; ++w) { mix[n].words[w] = fnv_hash(mix[n].words[w], dag_node->words[w]); } } #endif } } // compress mix for (unsigned w = 0; w != MIX_WORDS; w += 4) { uint32_t reduction = mix->words[w+0]; reduction = reduction*FNV_PRIME ^ mix->words[w+1]; reduction = reduction*FNV_PRIME ^ mix->words[w+2]; reduction = reduction*FNV_PRIME ^ mix->words[w+3]; mix->words[w/4] = reduction; } #if BYTE_ORDER != LITTLE_ENDIAN for (unsigned w = 0; w != MIX_WORDS/4; ++w) { mix->words[w] = fix_endian32(mix->words[w]); } #endif memcpy(ret->mix_hash, mix->bytes, 32); // final Keccak hash SHA3_256(ret->result, s_mix->bytes, 64+32); // Keccak-256(s + compressed_mix) } void ethash_quick_hash( uint8_t return_hash[32], const uint8_t header_hash[32], const uint64_t nonce, const uint8_t mix_hash[32]) { uint8_t buf[64+32]; memcpy(buf, header_hash, 32); #if BYTE_ORDER != LITTLE_ENDIAN nonce = fix_endian64(nonce); #endif memcpy(&(buf[32]), &nonce, 8); SHA3_512(buf, buf, 40); memcpy(&(buf[64]), mix_hash, 32); SHA3_256(return_hash, buf, 64+32); } int ethash_quick_check_difficulty( const uint8_t header_hash[32], const uint64_t nonce, const uint8_t mix_hash[32], const uint8_t difficulty[32]) { uint8_t return_hash[32]; ethash_quick_hash(return_hash, header_hash, nonce, mix_hash); return ethash_check_difficulty(return_hash, difficulty); } void ethash_full(ethash_return_value * ret, void const *full_mem, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) { ethash_hash(ret, (node const *) full_mem, NULL, params, previous_hash, nonce); } void ethash_light(ethash_return_value * ret, ethash_cache const *cache, ethash_params const *params, const uint8_t previous_hash[32], const uint64_t nonce) { ethash_hash(ret, NULL, cache, params, previous_hash, nonce); }