#include "ExecutionEngine.h" #include #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-parameter" #include #include #include #include #include #include #include #include #include #include #include #pragma GCC diagnostic pop #include "Runtime.h" #include "Memory.h" #include "Stack.h" #include "Type.h" #include "Compiler.h" #include "Cache.h" namespace dev { namespace eth { namespace jit { ReturnCode ExecutionEngine::run(bytes const& _code, RuntimeData* _data, Env* _env) { std::string key{reinterpret_cast(_code.data()), _code.size()}; /*if (auto cachedExec = Cache::findExec(key)) { return run(*cachedExec, _data, _env); }*/ auto module = Compiler({}).compile(_code); //module->dump(); return run(std::move(module), _data, _env, _code); } ReturnCode ExecutionEngine::run(std::unique_ptr _module, RuntimeData* _data, Env* _env, bytes const& _code) { llvm::sys::PrintStackTraceOnErrorSignal(); static const auto program = "EVM JIT"; llvm::PrettyStackTraceProgram X(1, &program); llvm::InitializeNativeTarget(); llvm::InitializeNativeTargetAsmPrinter(); llvm::EngineBuilder builder(_module.get()); builder.setEngineKind(llvm::EngineKind::JIT); builder.setUseMCJIT(true); std::unique_ptr memoryManager(new llvm::SectionMemoryManager); builder.setMCJITMemoryManager(memoryManager.get()); builder.setOptLevel(llvm::CodeGenOpt::None); auto triple = llvm::Triple(llvm::sys::getProcessTriple()); if (triple.getOS() == llvm::Triple::OSType::Win32) triple.setObjectFormat(llvm::Triple::ObjectFormatType::ELF); // MCJIT does not support COFF format _module->setTargetTriple(triple.str()); ExecBundle exec; exec.mainFuncName = _module->getModuleIdentifier(); exec.engine.reset(builder.create()); if (!exec.engine) return ReturnCode::LLVMConfigError; _module.release(); // Successfully created llvm::ExecutionEngine takes ownership of the module memoryManager.release(); // and memory manager exec.engine->setObjectCache(Cache::getObjectCache()); // TODO: Finalization not needed when llvm::ExecutionEngine::getFunctionAddress used //auto finalizationStartTime = std::chrono::high_resolution_clock::now(); //exec.engine->finalizeObject(); //auto finalizationEndTime = std::chrono::high_resolution_clock::now(); //clog(JIT) << " + " << std::chrono::duration_cast(finalizationEndTime - finalizationStartTime).count(); auto executionStartTime = std::chrono::high_resolution_clock::now(); std::string key{reinterpret_cast(_code.data()), _code.size()}; //auto& cachedExec = Cache::registerExec(key, std::move(exec)); auto returnCode = run(exec, _data, _env); auto executionEndTime = std::chrono::high_resolution_clock::now(); clog(JIT) << " + " << std::chrono::duration_cast(executionEndTime - executionStartTime).count() << " ms "; //clog(JIT) << "Max stack size: " << Stack::maxStackSize; clog(JIT) << "\n"; return returnCode; } namespace { ReturnCode runEntryFunc(ExecBundle const& _exec, Runtime* _runtime) { // That function uses long jumps to handle "execeptions". // Do not create any non-POD objects here // TODO: // Getting pointer to function seems to be cachable, // but it looks like getPointerToFunction() method does something special // to allow function to be executed. // That might be related to memory manager. Can we share one? typedef ReturnCode(*EntryFuncPtr)(Runtime*); auto entryFuncPtr = (EntryFuncPtr)_exec.engine->getFunctionAddress(_exec.mainFuncName); ReturnCode returnCode{}; auto sj = setjmp(_runtime->getJmpBuf()); if (sj == 0) returnCode = entryFuncPtr(_runtime); else returnCode = static_cast(sj); return returnCode; } } ReturnCode ExecutionEngine::run(ExecBundle const& _exec, RuntimeData* _data, Env* _env) { Runtime runtime(_data, _env); auto returnCode = runEntryFunc(_exec, &runtime); if (returnCode == ReturnCode::Return) this->returnData = runtime.getReturnData(); return returnCode; } } } }