/* This file is part of cpp-ethereum. cpp-ethereum is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. cpp-ethereum is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with cpp-ethereum. If not, see . */ /** @file Client.cpp * @author Gav Wood * @date 2014 */ #include "Client.h" #include #include #include #include #include "Defaults.h" #include "PeerServer.h" using namespace std; using namespace eth; void TransactionFilter::fillStream(RLPStream& _s) const { _s.appendList(8) << m_from << m_to << m_stateAltered << m_altered << m_earliest << m_latest << m_max << m_skip; } h256 TransactionFilter::sha3() const { RLPStream s; fillStream(s); return eth::sha3(s.out()); } VersionChecker::VersionChecker(string const& _dbPath): m_path(_dbPath.size() ? _dbPath : Defaults::dbPath()) { m_ok = RLP(contents(m_path + "/protocol")).toInt(RLP::LaisezFaire) == c_protocolVersion && RLP(contents(m_path + "/database")).toInt(RLP::LaisezFaire) == c_databaseVersion; } void VersionChecker::setOk() { if (!m_ok) { try { boost::filesystem::create_directory(m_path); } catch (...) {} writeFile(m_path + "/protocol", rlp(c_protocolVersion)); writeFile(m_path + "/database", rlp(c_databaseVersion)); } } Client::Client(std::string const& _clientVersion, Address _us, std::string const& _dbPath, bool _forceClean): m_clientVersion(_clientVersion), m_vc(_dbPath), m_bc(_dbPath, !m_vc.ok() || _forceClean), m_stateDB(State::openDB(_dbPath, !m_vc.ok() || _forceClean)), m_preMine(_us, m_stateDB), m_postMine(_us, m_stateDB), m_workState(Deleted) { if (_dbPath.size()) Defaults::setDBPath(_dbPath); m_vc.setOk(); work(true); } void Client::ensureWorking() { static const char* c_threadName = "eth"; if (!m_work) m_work.reset(new thread([&]() { setThreadName(c_threadName); m_workState.store(Active, std::memory_order_release); while (m_workState.load(std::memory_order_acquire) != Deleting) work(); m_workState.store(Deleted, std::memory_order_release); // Synchronise the state according to the head of the block chain. // TODO: currently it contains keys for *all* blocks. Make it remove old ones. m_preMine.sync(m_bc); m_postMine = m_preMine; })); } Client::~Client() { if (m_work) { if (m_workState.load(std::memory_order_acquire) == Active) m_workState.store(Deleting, std::memory_order_release); while (m_workState.load(std::memory_order_acquire) != Deleted) this_thread::sleep_for(chrono::milliseconds(10)); m_work->join(); } } void Client::flushTransactions() { work(true); } void Client::clearPending() { ClientGuard l(this); if (!m_postMine.pending().size()) return; h256Set changeds; for (unsigned i = 0; i < m_postMine.pending().size(); ++i) appendFromNewPending(m_postMine.bloom(i), changeds); changeds.insert(NewPendingFilter); m_postMine = m_preMine; noteChanged(changeds); } unsigned Client::installWatch(h256 _h) { auto ret = m_watches.size() ? m_watches.rbegin()->first + 1 : 0; m_watches[ret] = Watch(_h); cwatch << "+++" << ret << _h; return ret; } unsigned Client::installWatch(TransactionFilter const& _f) { lock_guard l(m_filterLock); h256 h = _f.sha3(); if (!m_filters.count(h)) m_filters.insert(make_pair(h, _f)); return installWatch(h); } void Client::uninstallWatch(unsigned _i) { cwatch << "XXX" << _i; lock_guard l(m_filterLock); auto it = m_watches.find(_i); if (it == m_watches.end()) return; auto id = it->second.id; m_watches.erase(it); auto fit = m_filters.find(id); if (fit != m_filters.end()) if (!--fit->second.refCount) m_filters.erase(fit); } void Client::appendFromNewPending(h256 _bloom, h256Set& o_changed) const { lock_guard l(m_filterLock); for (pair const& i: m_filters) if ((unsigned)i.second.filter.latest() >= m_postMine.info().number && i.second.filter.matches(_bloom)) o_changed.insert(i.first); } void Client::appendFromNewBlock(h256 _block, h256Set& o_changed) const { auto d = m_bc.details(_block); lock_guard l(m_filterLock); for (pair const& i: m_filters) if ((unsigned)i.second.filter.latest() >= d.number && (unsigned)i.second.filter.earliest() <= d.number && i.second.filter.matches(d.bloom)) o_changed.insert(i.first); } void Client::noteChanged(h256Set const& _filters) { lock_guard l(m_filterLock); for (auto& i: m_watches) if (_filters.count(i.second.id)) { cwatch << "!!!" << i.first << i.second.id; i.second.changes++; } } void Client::startNetwork(unsigned short _listenPort, std::string const& _seedHost, unsigned short _port, NodeMode _mode, unsigned _peers, string const& _publicIP, bool _upnp) { ensureWorking(); { Guard l(x_net); if (m_net.get()) return; try { m_net.reset(new PeerServer(m_clientVersion, m_bc, 0, _listenPort, _mode, _publicIP, _upnp)); } catch (std::exception const&) { // Probably already have the port open. cwarn << "Could not initialize with specified/default port. Trying system-assigned port"; m_net.reset(new PeerServer(m_clientVersion, m_bc, 0, _mode, _publicIP, _upnp)); } m_net->setIdealPeerCount(_peers); } if (_seedHost.size()) connect(_seedHost, _port); } std::vector Client::peers() { Guard l(x_net); return m_net ? m_net->peers() : std::vector(); } size_t Client::peerCount() const { Guard l(x_net); return m_net ? m_net->peerCount() : 0; } void Client::connect(std::string const& _seedHost, unsigned short _port) { Guard l(x_net); if (!m_net.get()) return; m_net->connect(_seedHost, _port); } void Client::stopNetwork() { Guard l(x_net); m_net.reset(nullptr); } void Client::startMining() { ensureWorking(); m_doMine = true; m_restartMining = true; } void Client::stopMining() { m_doMine = false; } void Client::transact(Secret _secret, u256 _value, Address _dest, bytes const& _data, u256 _gas, u256 _gasPrice) { ensureWorking(); ClientGuard l(this); Transaction t; // cdebug << "Nonce at " << toAddress(_secret) << " pre:" << m_preMine.transactionsFrom(toAddress(_secret)) << " post:" << m_postMine.transactionsFrom(toAddress(_secret)); t.nonce = m_postMine.transactionsFrom(toAddress(_secret)); t.value = _value; t.gasPrice = _gasPrice; t.gas = _gas; t.receiveAddress = _dest; t.data = _data; t.sign(_secret); cnote << "New transaction " << t; m_tq.attemptImport(t.rlp()); } Address Client::transact(Secret _secret, u256 _endowment, bytes const& _init, u256 _gas, u256 _gasPrice) { ensureWorking(); ClientGuard l(this); Transaction t; t.nonce = m_postMine.transactionsFrom(toAddress(_secret)); t.value = _endowment; t.gasPrice = _gasPrice; t.gas = _gas; t.receiveAddress = Address(); t.data = _init; t.sign(_secret); cnote << "New transaction " << t; m_tq.attemptImport(t.rlp()); return right160(sha3(rlpList(t.sender(), t.nonce))); } void Client::inject(bytesConstRef _rlp) { ensureWorking(); ClientGuard l(this); m_tq.attemptImport(_rlp); } void Client::work(bool _justQueue) { cdebug << ">>> WORK"; h256Set changeds; // Process network events. // Synchronise block chain with network. // Will broadcast any of our (new) transactions and blocks, and collect & add any of their (new) transactions and blocks. { Guard l(x_net); if (m_net && !_justQueue) { cdebug << "--- WORK: NETWORK"; m_net->process(); // must be in guard for now since it uses the blockchain. // returns h256Set as block hashes, once for each block that has come in/gone out. cdebug << "--- WORK: NET <==> TQ ; CHAIN ==> NET ==> BQ"; m_net->sync(m_tq, m_bq); cdebug << "--- TQ:" << m_tq.items() << "; BQ:" << m_bq.items(); } } // Do some mining. if (!_justQueue) { // TODO: Separate "Miner" object. if (m_doMine) { if (m_restartMining) { m_mineProgress.best = (double)-1; m_mineProgress.hashes = 0; m_mineProgress.ms = 0; ClientGuard l(this); if (m_paranoia) { if (m_postMine.amIJustParanoid(m_bc)) { cnote << "I'm just paranoid. Block is fine."; m_postMine.commitToMine(m_bc); } else { cwarn << "I'm not just paranoid. Cannot mine. Please file a bug report."; m_doMine = false; } } else m_postMine.commitToMine(m_bc); } } if (m_doMine) { cdebug << "--- WORK: MINE"; m_restartMining = false; // Mine for a while. MineInfo mineInfo = m_postMine.mine(100); m_mineProgress.best = min(m_mineProgress.best, mineInfo.best); m_mineProgress.current = mineInfo.best; m_mineProgress.requirement = mineInfo.requirement; m_mineProgress.ms += 100; m_mineProgress.hashes += mineInfo.hashes; ClientGuard l(this); m_mineHistory.push_back(mineInfo); if (mineInfo.completed) { // Import block. cdebug << "--- WORK: COMPLETE MINE%"; m_postMine.completeMine(); cdebug << "--- WORK: CHAIN <== postSTATE"; h256s hs = m_bc.attemptImport(m_postMine.blockData(), m_stateDB); if (hs.size()) { for (auto h: hs) appendFromNewBlock(h, changeds); changeds.insert(NewBlockFilter); //changeds.insert(NewPendingFilter); // if we mined the new block, then we've probably reset the pending transactions. } } } else { cdebug << "--- WORK: SLEEP"; this_thread::sleep_for(chrono::milliseconds(100)); } } // Synchronise state to block chain. // This should remove any transactions on our queue that are included within our state. // It also guarantees that the state reflects the longest (valid!) chain on the block chain. // This might mean reverting to an earlier state and replaying some blocks, or, (worst-case: // if there are no checkpoints before our fork) reverting to the genesis block and replaying // all blocks. // Resynchronise state with block chain & trans { ClientGuard l(this); cdebug << "--- WORK: BQ ==> CHAIN ==> STATE"; OverlayDB db = m_stateDB; m_lock.unlock(); h256s newBlocks = m_bc.sync(m_bq, db, 100); if (newBlocks.size()) { for (auto i: newBlocks) appendFromNewBlock(i, changeds); changeds.insert(NewBlockFilter); } m_lock.lock(); if (newBlocks.size()) m_stateDB = db; cdebug << "--- WORK: preSTATE <== CHAIN"; if (m_preMine.sync(m_bc) || m_postMine.address() != m_preMine.address()) { if (m_doMine) cnote << "New block on chain: Restarting mining operation."; m_restartMining = true; // need to re-commit to mine. m_postMine = m_preMine; changeds.insert(NewPendingFilter); } // returns h256s as blooms, once for each transaction. cdebug << "--- WORK: postSTATE <== TQ"; h256s newPendingBlooms = m_postMine.sync(m_tq); if (newPendingBlooms.size()) { for (auto i: newPendingBlooms) appendFromNewPending(i, changeds); changeds.insert(NewPendingFilter); if (m_doMine) cnote << "Additional transaction ready: Restarting mining operation."; m_restartMining = true; } } cdebug << "--- WORK: noteChanged" << changeds.size() << "items"; noteChanged(changeds); cdebug << "<<< WORK"; } void Client::lock() const { m_lock.lock(); } void Client::unlock() const { m_lock.unlock(); } unsigned Client::numberOf(int _n) const { if (_n > 0) return _n; else if (_n == GenesisBlock) return 0; else return m_bc.details().number + max(-(int)m_bc.details().number, 1 + _n); } State Client::asOf(int _h) const { if (_h == 0) return m_postMine; else if (_h == -1) return m_preMine; else return State(m_stateDB, m_bc, m_bc.numberHash(numberOf(_h))); } std::vector
Client::addresses(int _block) const { ClientGuard l(this); vector
ret; for (auto const& i: asOf(_block).addresses()) ret.push_back(i.first); return ret; } u256 Client::balanceAt(Address _a, int _block) const { ClientGuard l(this); return asOf(_block).balance(_a); } u256 Client::countAt(Address _a, int _block) const { ClientGuard l(this); return asOf(_block).transactionsFrom(_a); } u256 Client::stateAt(Address _a, u256 _l, int _block) const { ClientGuard l(this); return asOf(_block).storage(_a, _l); } bytes Client::codeAt(Address _a, int _block) const { ClientGuard l(this); return asOf(_block).code(_a); } bool TransactionFilter::matches(h256 _bloom) const { auto have = [=](Address const& a) { return _bloom.contains(a.bloom()); }; if (m_from.size()) { for (auto i: m_from) if (have(i)) goto OK1; return false; } OK1: if (m_to.size()) { for (auto i: m_to) if (have(i)) goto OK2; return false; } OK2: if (m_stateAltered.size() || m_altered.size()) { for (auto i: m_altered) if (have(i)) goto OK3; for (auto i: m_stateAltered) if (have(i.first) && _bloom.contains(h256(i.second).bloom())) goto OK3; return false; } OK3: return true; } bool TransactionFilter::matches(State const& _s, unsigned _i) const { h256 b = _s.changesFromPending(_i).bloom(); if (!matches(b)) return false; Transaction t = _s.pending()[_i]; if (!m_to.empty() && !m_to.count(t.receiveAddress)) return false; if (!m_from.empty() && !m_from.count(t.sender())) return false; if (m_stateAltered.empty() && m_altered.empty()) return true; StateDiff d = _s.pendingDiff(_i); if (!m_altered.empty()) { for (auto const& s: m_altered) if (d.accounts.count(s)) return true; return false; } if (!m_stateAltered.empty()) { for (auto const& s: m_stateAltered) if (d.accounts.count(s.first) && d.accounts.at(s.first).storage.count(s.second)) return true; return false; } return true; } PastMessages TransactionFilter::matches(Manifest const& _m, unsigned _i) const { PastMessages ret; matches(_m, vector(1, _i), _m.from, PastMessages(), ret); return ret; } bool TransactionFilter::matches(Manifest const& _m, vector _p, Address _o, PastMessages _limbo, PastMessages& o_ret) const { bool ret; if ((m_from.empty() || m_from.count(_m.from)) && (m_to.empty() || m_to.count(_m.to))) _limbo.push_back(PastMessage(_m, _p, _o)); // Handle limbos, by checking against all addresses in alteration. bool alters = m_altered.empty() && m_stateAltered.empty(); alters = alters || m_altered.count(_m.from) || m_altered.count(_m.to); if (!alters) for (auto const& i: _m.altered) if (m_altered.count(_m.to) || m_stateAltered.count(make_pair(_m.to, i))) { alters = true; break; } // If we do alter stuff, if (alters) { o_ret += _limbo; _limbo.clear(); ret = true; } _p.push_back(0); for (auto const& m: _m.internal) { if (matches(m, _p, _o, _limbo, o_ret)) { _limbo.clear(); ret = true; } _p.back()++; } return ret; } PastMessages Client::transactions(TransactionFilter const& _f) const { ClientGuard l(this); PastMessages ret; unsigned begin = min(m_bc.number(), (unsigned)_f.latest()); unsigned end = min(begin, (unsigned)_f.earliest()); unsigned m = _f.max(); unsigned s = _f.skip(); // Handle pending transactions differently as they're not on the block chain. if (begin == m_bc.number()) { for (unsigned i = 0; i < m_postMine.pending().size(); ++i) { // Might have a transaction that contains a matching message. Manifest const& ms = m_postMine.changesFromPending(i); PastMessages pm = _f.matches(ms, i); if (pm.size()) { auto ts = time(0); for (unsigned j = 0; j < pm.size() && ret.size() != m; ++j) if (s) s--; else // Have a transaction that contains a matching message. ret.insert(ret.begin(), pm[j].polish(h256(), ts, m_bc.number() + 1)); } } } #if ETH_DEBUG unsigned skipped = 0; unsigned falsePos = 0; #endif auto h = m_bc.numberHash(begin); unsigned n = begin; for (; ret.size() != m && n != end; n--, h = m_bc.details(h).parent) { auto d = m_bc.details(h); #if ETH_DEBUG int total = 0; #endif if (_f.matches(d.bloom)) { // Might have a block that contains a transaction that contains a matching message. auto bs = m_bc.blooms(h).blooms; Manifests ms; for (unsigned i = 0; i < bs.size(); ++i) if (_f.matches(bs[i])) { // Might have a transaction that contains a matching message. if (ms.empty()) ms = m_bc.traces(h).traces; Manifest const& changes = ms[i]; PastMessages pm = _f.matches(changes, i); if (pm.size()) { #if ETH_DEBUG total += pm.size(); #endif auto ts = BlockInfo(m_bc.block(h)).timestamp; for (unsigned j = 0; j < pm.size() && ret.size() != m; ++j) if (s) s--; else // Have a transaction that contains a matching message. ret.insert(ret.begin(), pm[j].polish(h, ts, n)); } } #if ETH_DEBUG if (!total) falsePos++; } else skipped++; #else } #endif if (n == end) break; } #if ETH_DEBUG // cdebug << (begin - n) << "searched; " << skipped << "skipped; " << falsePos << "false +ves"; #endif return ret; }